With NET and .NET Core
Eighth Edition

Andrew Troelsen
Philip Japikse

Apress’

Pro C# 7

Andrew Troelsen
Philip Japikse

ApPress’

Pro C# 7: With .NET and .NET Core

Andrew Troelsen Philip Japikse
Minneapolis, Minnesota, USA West Chester, Ohio, USA
ISBN-13 (pbk): 978-1-4842-3017-6 ISBN-13 (electronic): 978-1-4842-3018-3

https://doi.org/10.1007/978-1-4842-3018-3
Library of Congress Control Number: 2017958717
Copyright © 2017 by Andrew Troelsen and Philip Japikse

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www. freepik.com)

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Gwenan Spearing

Development Editor: Laura Berendson

Technical Reviewers: Eric Potter, Lee Brandt, and Sean Whitesell
Coordinating Editor: Mark Powers

Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484230176. For more
detailed information, please visit waw.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3018-3
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/
rights-permissions
www.apress.com/
rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484230176
www.apress.com/source-code

To the entire Troelsen clan: Mary (mom), Walter (dad), Mandy (wife), and Soren (son).
We miss you, Mikko (the cat).

—Andrew
To my family, Amy (wife), Conner (son), Logan (son), and Skylar (daughter),
thank you for all of the support and patience you have given me.

—Philip

Contents at a Glance

About the AUtROIS.........ccccmmmemmmmnsnn s ————————— li
About the Technical REVIEWEI'Succsssssmsssssnsssssnsssssnsssssnsssssnsssssnsssssasssssasssssnnssssas liii
Acknowledgments........ccccuuisssnmmmmmmmmmmssssssssssnnnmmssssssssssssnnnnnsssssssssnnnnnnnsesssssssnnnnnnnnnnss Iv
INtroductioncccceumisemnmsssmnmssssnmssnnssssnnsssssnnsssnnssssanssssnnnsssnnnnssnnnnssnnnnssnnnnnssnnnnsnnns lvii
Part I: Introducing C# and the .NET Platformccccccmmnniinncnnnnnnes 1
Chapter 1: The Philosophy of .NET..........cccummmmmmmmmmmmmmmmmmmmsssssssssssssssssssssssssssssssnns 3
Chapter 2: Building C# Applications.......cccuueemmmmmmmmmmmssssssssssssssmssssssssssssssssssssssnns 35
Part Il: Core C# Programing......cccccusssssessnmmmmssssssssssnnnnssssssssssnsnnnnnssssns 53
Chapter 3: Core C# Programming Constructs, Part I...........ccccvveemninsssennnnnsssnnnnn 55
Chapter 4: Core C# Programming Constructs, Part Ilccccmnsemnmnssnnssssannnns 111
Part lil: Object-Oriented Programming with C#...........cocccemmirrniianns 159
Chapter 5: Understanding Encapsulationccccuuemmmnnnsssnnmssssssssssssssssssssssnnns 161
Chapter 6: Understanding Inheritance and Polymorphism..........ccccusseemnrnsssnnnnns 213
Chapter 7: Understanding Structured Exception Handling........c.ccoccnvinennnssannns 255
Chapter 8: Working with Interfaces.........ccccusemmmmnnsnmmmmnssssnmmmsssnmmssssnmsanns 283
Part IV: Advanced C# Programmingccceeersnssmssssssssssssssssssssssnssnnas 323
Chapter 9: Collections and GENEriCS......cccrurmsssmmmmrssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnnss 325
Chapter 10: Delegates, Events, and Lambda EXpressionscccuusssennsnsssnnnnss 365
Chapter 11: Advanced C# Language Features.......ccccummmmmmmmmmmnmsssssssssssnnssssssssnns 407
Chapter 12: LINQ to ObjectS.....curnmmmmmmmmmmmmmmmssnsssssssmssssssssssssssssssssssssssnnssssssssssssnns 445
Chapter 13: Understanding Object Lifetime...........ccccunnnmemmmmmnnnnnsssssssssssnnnsssssnns 479

CONTENTS AT A GLANCE

Part V: Programming with .NET Assemblies........ccccccussssnecmnnnnnnssanns 507
Chapter 14: Building and Configuring Class Libraries.......cccccussemssssssssnnssssssnnns 509
Chapter 15: Type Reflection, Late Binding, and Attribute-Based Programming.... 561
Chapter 16: Dynamic Types and the Dynamic Language Runtimeccuscuennne 609
Chapter 17: Processes, AppDomains, and Object Contexts........cccrsssunnrrssssnnnnas 631
Chapter 18: Understanding CIL and the Role of Dynamic Assemblies............... 657
Part VI: Introducing the .NET Base Class Libraries......couummmssssssnnes 699
Chapter 19: Multithreaded, Parallel, and Async Programmingcccurssssnnnnss 701
Chapter 20: File 1/0 and Object Serialization...........cccivunsummnmnssssnnnmssssssnnssssssnnns 755
Chapter 21: Data Access with ADO.NET..........cccenmsmmmnmmssssnnnnsssssnssssssssssssssssnnnnes 803
Chapter 22: Introducing Entity Framework 6cccuuusseememmmmnnnsssssssssssssssssssssns 857
Chapter 23: Introducing Windows Communication Foundation..............ccoeeeeune 907
Part VII: Windows Presentation Foundation...............ccusceeennnssannnnas 963
Chapter 24: Introducing Windows Presentation Foundation and XAML............. 965
Chapter 25: WPF Controls, Layouts, Events, and Data Binding...........cccnriisnnes 1003
Chapter 26: WPF Graphics Rendering ServiCes.......ccccuumsssmsmmnmmmssssssssssssnnssnnss 1061
Chapter 27: WPF Resources, Animations, Styles, and Templates..........c.ccuuneee 1095
Chapter 28: WPF Notifications, Validations, Commands, and MVVM............... 1137
Part VIII: ASP.NET.ccosssnnnnnnnnnmmmmmmmmmmmnnnnnnnnnnnnnnssssssssssssssssssssnnnnns 1177
Chapter 29: Introducing ASP.NET MVC.........ccccccummmsssnnnnmmssssnsnssssssssnssssssnnnssssnnns 1179
Chapter 30: Introducing ASP.NET Web APL.........ccccussmmnmmssssnnnmsssssssnssssssnsssssssnns 1223
Part IX: .NET COREccossummmmmmmmmmmmmmemennnnnnnnnnn s s s s sss s s s s nssnnnnns 1243
Chapter 31: The Philosophy of .NET COIecccccumrmrmssssssssssssssssssssssssssnnsnssssnnss 1245
Chapter 32: Introducing Entity Framework Core.........cccusseemrmmssssssnsssssssnssssssnns 1255
Chapter 33: Introducing ASP.NET Core Web Applications...........cccinssnnennrsssanns 1279
Chapter 34: Introducing ASP.NET Core Service Applications..........ccusseenrrnssanes 1329

Contents

About the AUtNOIS.....ccuuimssssmmmmmssssnnmsssssssmmssssssssmsssssssnmsssssnnnessssnnnnsssssnnnnssssnnnnssssnnnnnss li
About the Technical REVIEWErScuuseemmmsssssnnmmssssssnsmssssssssssssssssnssssssssnssssssnnnsssssnns liii
AcknoWIedgmentscccuusseesmmssssnnnnsssssnnnssssssnnnssssssnnnssssssnnnnsssssnnnsssssnnnnnssssnnnnsssssnnnnss v
1L L1 LT T | lvii
Part I: Introducing C# and the .NET Platformccoccmmmmmnnnnsssnnnces 1
Chapter 1: The Philosophy of .NET..........cccimmsemmmmmmsssnnnmmssssssnssssssssssssssssssssssssssssssss 3
An Initial Look at the .NET Platform..........cccoeeeeececececcce e ses s 3
Some Key Benefits of the .NET Platform ... 4
Introducing the Building Blocks of the .NET Platform (the CLR, CTS, and CLS)................ 4
The Role of the Base Class LIDIAIIESevrererererererererereres 5

What C# Brings 10 the TADIE..........cou et re s rae e s sae e sae e na e e es 5
Managed vs. UnManaged GOcceccvueeereererererereerersesersesesaessssessssessesessssessessssessesesssssssessssessssessssnaes 8
Additional .NET-Aware Programming LANQUAJES.........ccceerrerrersersesssssssssssssssssssssssssssssnens 8
Life in a Multilanguage WOrld ..ot n e n e e 9

An Overview of .NET ASSEMDIIES.......cccoceerererrerere e sn e snesn e 9
The Role of the Common Intermediate Languagecococeeeermeienerernencsesseesesesee e sesens 10

3T T3 1130 | OO S 13
Compiling CIL to Platform-Specific INStrUCLIONS..........oueeeceerrccerreee s 13

The Role of .NET Type Metadata...........ccoceururercnerneicrirseeireseeese s 13

The Role of the Assembly Manifest ..o 14
Understanding the Common Type System.........ccoerererrrnrnre e 15
CTS ClaSS TYPES...eeuerueeruerererseersesersessrsessssessesessessssessssessssessenssssssssessssessesessessssssssessssessssessesessssssaesansens 15

CTS INTEITACE TYPES ..vcuereerereereeereerersererserasessesessesesaesessesassessesessesessesessessssessesesssnsssessssesassessenessensssssanaens 16

vii

CONTENTS

CTS STUCTUIE TYPES ..cuvreeereerreereerersesessesasessesessesessesasssssssessesessssessessssessssessesessssssessssessssessenessssssassansens 16
CTS ENUMETALION TYPES ..eveuerreereerersererserasesseessessssesassessssessssessssssssssssessssessessssssssssssssessssessesesssnssssnansens 17
CTS DEIEUALE TYPES ..veereererereerereerersesesserassessesessesessesassessssessesessssssssssssessssessessssssssssssssessssessesesssssssssansens 17
CTS TYPE MEBIMDELScuvreeereerreereesersesessesassessesessessssesassessssessesesssssssessssessssessesesssssssessssessssessesesssssssssansens 17
INTFNSIC CTS DALA TYPES ..uveverveeereerereerereraserseessesessesessesasessesessesessesessessssessesessssssssssssessssessenessssssssansens 18
Understanding the Common Language Specificationcccceoeeeeeeececssscescessensennnns 19
ENSUring CLS COMPIIANCE........cueeeeereeecrerieeeseeise e nnnnn s 20
Understanding the Common Language RUNtime...........ccoceevierrennsesesessessssesesessessesensens 20
The Assembly/Namespace/Type DistinClion..........ccocceeevieensnicsnicsssc e 22
The Role of the Microsoft ROt NAMESPACEccccvververvirrirrirrr e 25
Accessing a Namespace Programmaticallycccvvvverrnninnenninsensesnessesses s ses s sesssssessesssnses 25
Referencing External ASSEMDIIEScovcrerinmsismsmsmsinssssissssss s 26
Exploring an Assembly USing ildaSm.eXe.........cccverrmrrersnsersensenses s sns e sesnas 27
L T 1T PO 28
Viewing Type Metadata..........c.coococeerermriercrirrecririre e 29
Viewing Assembly Metadata (aka the Manifest)..........c.oocoerrinernnnscnsr s 30
The Platform-Independent Nature of .NETccoovirvrvrnnsncr s 30
THE MONO PrOJECL........coverieeereresreeseresssesesssssse e s se s se e s sa s e s s e s s s e s sse s e e snsn e nsnsans 32
€2 11] PP 32
e (0 E T 1 =8 00 32
RS0 111 33
Chapter 2: Building C# Applications.........ccccuusemmmmnsssssnmmmssssssmmssssssssmssssssssssssssnsns 35
Building .NET Applications on WindOWSc.ccerrveenirnnninnesnsesse s sses e ssesssessesssenns 35
Installing Visual STUI0 2017ccooevrerrerrrcrerere s rse e e e re e e s e saesesaessssesassesassessesesassesasanaens 36
Taking Visual Studio 2017 fOr @ TESE-DIIVEceeeverrererrererrereerersesessesesesssersssessesessssssssssssessssessssesssnssaes 38
Visual Studio 2017 Professional ... 50
Visual Studio 2017 ENTEIPIISE ...eeeverererrereererererereresessessssessssessessssessssessssessesessssssssssssessssessssessssssssnssaes 50
The .NET Framework Documentation SYSTemcccvvevrierrrererererereresersssesse e sessesesesessessssessssenans 50
Building.NET Applications on a Non-Windows 0S.........ccccrerrrrncnsssessesses s s sessenens 52
1111 1P 2SS 52

viii

CONTENTS

Part Il: Core C# Programing......ccccusssseceenmmmmssssssssssnsnnsssssssssssssnsnssssssss 93

Chapter 3: Core C# Programming Constructs, Part I............cccuseemmmnssnnnnnnssssnnnnns 55
The Anatomy of @ Simple C# Program..........cccuceeennenennesnssssessssessssssssessessssssssssssssnes 55
Variations on the Main() MEthod..........cccourreenrrecrr e 57
Specifying an Application Error COUEccovureercrerrsencririsesesesessss s se s sesessssens 58
Processing Command-Ling ArGUMENTSccccovuererererneneseseseesesesssesesssssssessssssssessssssssesssssssssssssssaes 59
Specifying Command-Line Arguments with Visual Studio..........ccoceeeenreiescnnniescnrseesereseeseseseeenes 61
An Interesting Aside: Some Additional Members of the System.Environment Class...... 61
The System.ConsO0le ClaSSc.ccucrvrrersersessssssssesses s sesssssss s s sss e snssns s snssnssssssssssnnns 63
Basic Input and Output with the Console Class...........ccovvreirerniennennere e sese s 63
Formatting Console QUEPUL ..o a s e s e sn s 65
Formatting NUMEriCal Datacccorerniniccrecre e e se e sn e 65
Formatting Numerical Data Beyond Console Applicationscccovevncernncnnnsnesnsesssesesesssessesensens 67
System Data Types and Corresponding C# KEyWords...........ccuocernereressesnsessesessessesensens 68
Variable Declaration and INitialization ... 69
Intrinsic Data Types and the NEW OPErator............cccoreeccrnniescrrre s 4l
The Data Type Class HIErarchy ... s sssssessnsnns 72
Members of NUMErical Data TYPES......cccourrrererrrreririreeese s 73
Members 0f SySteM.BOOIBAN............cueeeeeereecr e 74
Members 0f SYSTEM.CRAN ... 74
Parsing Values from String Data...........cccovrierernnnencnnnescsess e s 75
Using TryParse to Parse Values from String Data...........ccccovreicnrnsscnennesesesessseseses s 75
System.DateTime and SyStem.TIMESPAN...........ccccerrercrrre e s 76
The System.Numerics.dll ASSEMDBIY ..o e 76
Digit SEParators (NBW)coerrerererererereneseesesee e 78
Binary LIiterals (NBW)cocoererirererireisereenesesesee s 78
Working with String Dataccccvvrvririrrersr s sn s sne e 79
Basic String ManipUIALioN...........coveererrrer et ree e re e s e e sae e saese s e sas e saesesaenesasanaens 80
YT 00T = =T - 110 80
ESCAPE CNATACTIEYS.......cveererereeerreserserersesasessesessesesaesassesassessesesssssssessssessssessesesssssssssnsessssessesessssssassansens 81

ix

CONTENTS

Defining Verbatim SHNQS........covevre et rereres e rse s sese e se e ss s e saesesassesassassesassesaesesassesasnanaens 82
StriNgs AN EQUALIEY......ccceeeveeeerererererere s sereresersssessesessesessesas e saesesassessssassesassesassessssassesassesssnessensnaes 82
Strings Are IMMUEADIEove o e sa e a e e ae e e e e e a e e nnen 85
The System.Text.StringBUIIUEr TYPEeevverererererereresreres e rse s ssesesseras e ssesessesessssessesassesassessssesssnsnas 86
YL T C=T 010 = 0 87
Narrowing and Widening Data Type CONVErSiONS..........ccccverrerrersessessessnssessessesssssessenens 88
The CRECKEA KBYWOKMcooeeeeeeeece ettt 91
Setting Project-wide OVerflow ChECKING...........ccccerururencririnescnerisee e 93
The UNChECKEU KEYWOITcovveeeeeecercrireecctri et 93
Understanding Implicitly Typed Local Variablesccuceevrerrermnsesesesesessesesessessesensens 94
Restrictions on Implicitly Typed Variablesccoceerreeneresnesesenssssssessssssesessssssesesssssssesssssssssssssssenes 95
Implicit Typed Data Is Strongly Typed Data............ccccevrererernencninesesesesssssesessssssesessssssssesessssssessssssenes 96
Usefulness of Implicitly Typed Local VariabIesc..ccceeeernencnensnesesessesssessssssesesesssssesesssssesessssens 97
C# Iteration CONSTIUCES........ccovcccrcririris s 98
(o0 0o o S SSSS 98
L LT 0 =T e (8 0T oSS 99
Use of Implicit Typing Within foreach CONSIIUCEScccecerererereriererre e e e ssesesaesanaens 99
The while and do/while LoOPIiNg CONSTIUCES........cceeevererererererrerre e sereres e rassessesessesessesessessssessssenas 100
Decision Constructs and the Relational/Equality Operators..........ccceervveercercersenseninnns 101
The if/else STateMENt ... —————————————— 101
Equality and Relational Operators ... e ses s e sss s 101
The Conditional OPEIator ..o s sa e s p e e 102
T (o L0 1] £ 0] £ PSSR 103
The SWItch Statement...........co e —————————— 103
Using Pattern Matching in Switch Statements (NEW).........ccooreernrncencneeeere s 106
SUMMEAIY ...ttt r s ae e a s sae e s e e a e e s e nan e nae e n e nnnnnnnns 109
Chapter 4: Core C# Programming Constructs, Part Il.............cccsvnineeemmnnnnncssssnns 111
Understanding CH# ArTays........ccouceerrisesnsesessssessssssessssessessssessssssssssssessssssssssssssssssssens 111
C# Array Initialization SYNTAX.........ccceveierernssesesrsssse s sesessssesssssssssssnsnnes 112

IMPIICItly TYPEA LOCAI AITAYS ...veveueererreereressssesessssssssessssssssssesssnnes 113

CONTENTS

Defining an Array 0f ODJECEScovvverererererer s st s e sesae e s sa e a e e ae e ae e ae e s e s e e e es 114
Working with MUidimenSional ATTaYSccccuvevrnernrninssssesses s sss s sses 115
Arrays As Arguments or RETUIN VAIUESccvvrvrnrrrrirstr ettt ss s se s e e e sns e s 116
The SyStEM.AITAY BASE ClaSScceerereerererererersersesersesessessssessssessesesssssssessssessssesssssssssssssssssessesssssssaes 117
Methods and Parameter Modifiers..........crnnn e 118
Return Values and Expression Bodied Members (Updated)............coeeeenerernencnenncsesenenesesesessseeens 119
Method Parameter MOIfiers.........coovnnnninininis s 119
DISCAIS.....ccieieiceii e 120
The Default by Value Parameter-Passing BENaVIOrccovercrirncccnernccserenee s 120
The out Modifier (UPated).........cccorreecrerrecrirreecse e 121
The ref MOUIfIEr ... 123
ref Locals and REtUINS (NBW)ccoceuieerererreenesisse s se s se s ss e ssnssnas 124
The Params MOGIfIENccccierrire e e e s p e e nrenas 126
Defining Optional PArameters..........o.o et 127
Invoking Methods Using Named Parameters...........ccccovreenrnenencnenssesesessssesesssss e sesessseenens 129
Understanding Method OVerloadingc.ocececeererencnnnencresseesese s eeens 131
LOCAI FUNCLIONS (NBW) ... e ss s s e s nnsnnas 133
Understanding the enum TYPE.....ccccvvcerrcererneresresese e s 134
Controlling the Underlying Storage for an @nUMcooeceernenenennssssesssese e sessssesenns 135
Declaring enum VariabIes.........ccoueceerrreeserenrssssesssssssessssssssesessssssssesssnes 136
The SYSTEM.ENUM TYPR......cocererreecrirrrreesessssee s se s e sssss s sesssss e s s e sassssssessssssesssssssssnssssans 137
Dynamically Discovering an enum’s Name-Value Pairsc.ccccerrnresesesnssssesssesesessssssesessssssssenens 137
Understanding the Structure (aka Value TYPe)ccceervereeriernninesnnsese e e 139
Creating StruCtUure VariabIEs..........cccevererereniersereresereesesesesessssessesessesessssassessssessssesssssssssassesassesssnenes 141
Understanding Value Types and Reference TYPescccceeeeerereseeseesessnsssssssssssessensenns 142
Value Types, References Types, and the Assignment Operator.............cccovoeeeerrereserenesescsesssesesesens 143
Value Types Containing REfErenCe TYPES.......cccvururercrerrneseririnesesessse s sese s sesnns 145
Passing Reference TYPeS DY VAIUE..........cocoumieeecnieeeeeeecr e 147
Passing Reference Types by REfErence..........cccouvreeerrcicnsseeererie e 149
Final Details Regarding Value Types and Reference TYPES........cccceerererrererermnenesesessesesesessssesesessseeens 150

xi

CONTENTS

Understanding C# NULIADIE TYPES........ccevrerererserrenmreressessesesse s ssesessessssessesssssssssessens 150
Working With NUIADIE TYPESeeeeeeeeeerrecirr s 152
The Null CoaleSCiNG OPEIALONcceceeeerereerererseesesesre e e se s e s e s s s e sasss s e sssssssssssssns 153
The Null Conditional OPErator...........ccceceerrenererereesere s se s sessans 153

TUPIES (NBW)...eeeeeeeec ettt s e n e s n e s sn e s en e s ne s e ne s n e ne s nenne s 154
Getting Started With TUPIEScoveeverere et erre v ree s s e s e sae e se e sae e saesas e saesesae e sassasaesassesasnenes 155
Inferred Variable NamMES (CH# 7.1) ... rerrererrerrerereesereesersesesessssessesessesessessssessssessssesssssssssassesassesssnenes 156
Tuples As Method REtUIN VAIUEScceveiveriernirrcir e ss e sas s s s s s ses s s sssssssassssnns 156
DiSCArdS With TUPIES.......coerererereerereererererereserseseras e saesessesassesae e saesesaesesassassesassesaesesassesasassesassesssneres 157
DECONSIIUCKING TUPIEScereererereeereererte st rreres e raeserae e saesessesas e s s e e saesesaesesaesasaesassesaesesassesassanseansesssneres 157

BT 111 112 SRS 158

Part Ill: Object-Oriented Programming with C#.........cccsnssssssssssnnnns 159

Chapter 5: Understanding Encapsulationcccueemmmnssemnmnnsssssnmssssssnsssssnns 161
Introducing the C# Class TYPEcccevererereerereereerseseessessssassassassssssssssssssassassassassssssssnns 161
Allocating Objects With the NEW KEYWOIT..........ccceeevererererererrereerereesesesesessssessssessesessessssessssessssesaes 164
Understanding CONSIIUCIONS........cccoeiereresece e ss s sresns e snssnssnesnenns 165
The Role of the Default CONSIIUCTON ..o 165
Defining Custom CONSIIUCIONS ..o e sp s e 166
The Default Constructor ReVISItEd ... 167
The Role of the this KEYWOIdccvceeriienniercsirenneressse s snesnsnens 169
Chaining Constructor Calls USINg thiSccccerirenennnccrirreesesesee e seens 170
0DbServing CONSIIUCTON FIOWcccoceviueecririeecrisrse e e s ss s ssenns 173
Revisiting Optional AFGUMENTScooeeeerireiecriree e nes s nnns 174
Understanding the static KEyWordcccoeeveverinnnnns s ses e senenns 176
Defining Static Field Data.........ccccccvererereriernrere e sereeseseresersssessesessesessesassesassessssessssessssassesassesssnenes 176
Defining Static METNOASccccvecererre e se e e e s s ae e ae e e sa s e e ns 178
Defining Static CONSIIUCTONS.........cccvuerererererererre s ree s s s s ss e e sae e s sesesse e s e sas e saesesaesesaesasaesassesannenes 179
DefiNiNG STAtiIC ClaSSES....curierererrererrerererereressersesersesessesesserassessssessesessesesssssssessssessesesssssssssassesassesseneres 182
Importing Static Members via the C# using KEYWOIdccovverevererrerererensersesereesessesessesessessssenes 183

xii

CONTENTS

Defining the Pillars 0f Q0P ..o 184
The Role Of ENCAPSUIALIONc.cceerereeceerirecirise e n s 184
The Role of INNBHTANCE...........coer e 184
The Role 0of POIYMOIPRISI.......cccciiiiieircrererir e e sa s s ae e sae s se s e s e nnenes 186

C# ACCESS MOMIfIBIScvrereiriscscciiss e s 188
The Default ACCESS MOUIfIErScvvriviiriiririis 188
Access Modifiers and NESIEU TYPEScovveverrererrerrererererereseressersesersesessesassessssessssessessssessssesseessssesaes 189

The First Pillar: C#’s Encapsulation SErvicesccvvrvrcrsrsssessssesses s s sessessessennns 190
Encapsulation Using Traditional Accessors and MUutatorsccooeeecrrnescsenssesesesese s 191
Encapsulation Using .NET Propertiescucrreninnncsnersscse s e sssssssssessssessssesns 193
Using Properties Within a Class Definition...........ccvcverncnnicnnncnnssecrs s e 196
Read-0nly and Write-0nly Properties........ccouvrerreriennesiness s sesssssse s sessesessesesssssssessssessssesns 198
Revisiting the static Keyword: Defining Static Propertiesccovvevrcniernccnssnccsscesesesesesens 199

Understanding Automatic Properties...........ccovverenrrernnesensssesssssesessessessssessssessesessens 199
Interacting with AUtOMAtC PrOPErtiesc.coveeecrrrereserirircereres s 201
Automatic Properties and Default ValUESccceeeeireeccrinnescnir e sesens 201
Initialization of AUTOMALIC PrOPErties........cocoeverererrnescririnesese e 203

Understanding Object Initialization SyntaX..........ccccveeverernnsnnnnss s senseens 204
Calling Custom Constructors with Initialization Syntax..........ccceccvevrerrirrnserrrere e 205
Initializing Data with Initialization SYntax..........c.covn i ————— 207

Working with Constant Field Data............c.ccoovererinnscscn e 208
Understanding Read-0nly Fields ... s s e ssssesns 209
Static Read-0nly FIeldS ...t e s sre s e snn e 210

Understanding Partial ClasSesccoouvererrriernnmssesssesesnsse s ssesssessssessssessens 211
Use Cases for Partial ClaSSeS? ..o 212

E3 1111 P2 7S 212

Chapter 6: Understanding Inheritance and Polymorphism..........cucousmminnsanssanins 213

The Basic Mechanics of INheritance ... 213
Specifying the Parent Class of an EXiSting Class........ccoucverrererierenserssereseresesesessersssessssessesessesessens 214
Regarding MUItiPIe BaSE CIASSEScvrererererrerserersesersesersessssessssessesessessssessssessssessssessesssssssssessssesssneres 216
The SEAIEU KEYWOITocueeeeeieieir ettt e e s sa e r e et e e e st e e e sn e e e e e nn e snenn e e s 216

CONTENTS

Revisiting Visual Studio Class Diagramscccocuverennsernnmssssnssssssssessssessesessessssesns 218
The Second Pillar of 00P: The Details of Inheritance............c.cocovrniiinnnnniinnen 220
Controlling Base Class Creation with the base KEYWOrd............ccoevrerverenierersereereree e seresessesesenes 221
Keeping Family Secrets: The protected KEYWOIdccoccveveereevereererereresereresersesersesessesessesessessssenes 223
Adding @ SEalEd ClaSs..........uvvmrimnenisnirii s ———— 224
Programming for Containment/Delegation..........cc.ccoceevvernnnennscnssnsensse e 225
Understanding Nested Type Definitions..........ccovvrrinnnncnnicsnscsn e ses e ssssens 226
The Third Pillar of 00P: C#’s Polymorphic Supportccocvvvvrvrvrcrsrces e 228
The virtual and override KEYWOIUS..........coveceerereenesisreesesessse s seses s sssssssssssssns 229
Overriding Virtual Members Using the Visual Studio IDE..............ccccoriennnnencnensessesese e 231
Sealing Virtual MEMDETS.........ccooereecereecirr s 233
Understanding ADSIIACt CIASSESueerererrriererirrsesesisrsese s se s se s e s e ssssssnssnnes 233
Understanding the PolymorphiC INtErfaceoo e 236
Understanding Member ShadOWINgccoeceeerrrnenenirnesesessee s ses s ssssesssesasssssssnns 240
Understanding Base Class/Derived Class Casting RUl€S.........ccocvvvrrrrvrrensensensensennenns 241
TRE CH# @S KBYWOIT........eecereerereererereereraesessesesesassessesessssssssssssessssessssesssssssssassessssessssssssssssessssessensssssnaes 243
The C# is Keyword (UPUated)ccceeererererereresrerserersesessesesersssessesessssessessssessssessssssssssssessssessssssssssnaes 245
Pattern Matching RevViSited (NEBW)cceveererrerererereresereresessssersesessesessessssessssessssessessssssassesassesssneres 246
The Master Parent Class: System.Object ... 247
Overriding System.Object. TOSIFNG()......cccvrerrrrerinrrerre e e sr s s r s 250
Overriding System.ODJECT.EQUAIS()cceerermreerernreesererseese e se s se s se s ses s nnas 250
Overriding System.Object.GEtHASNCOUE()cocevrrrreererereerere e 251
Testing Your Modified Person Class...........ccouerrnrennennesnesssesesessssessssssessssessssessssssssssssessssessssssnes 252
The Static Members of SyStem.ODJECT ... 253
SUMMEAIY ...ttt a s s ae s r s s r e s e a e e ae e n e nnnnnnnas 254
Chapter 7: Understanding Structured Exception Handling.........cccccuseemnnnsssnnnnas 255
Ode to Errors, Bugs, and EXCEPLIONSccceeverereerercre e e ses e e s s sessns s sesenns 255
The Role of .NET Exception Handlingccccvverververversennennensensessesses s ses e e sassenss 256
The Building Blocks of .NET Exception HANAIiNgG.........cceeeverrererrereerereerererereresseseesessesessesessessssessenesas 257
The System.EXCEption BaSE ClASS........cccvrererrereerereererserererssersssessesessesessessssessssessssssssssssessssessssssssssnaes 257

xiv

CONTENTS

The Simplest Possible EXaMPIEccccvvreerierrerserrerer s sae s 259
Throwing a General Exception (Updated)cooeeeeerrrnencnenncscsirse e sesss s sesessns 261
CatChing EXCEPLIONScvoveeecerereecerise s s a s s e nn s e e 262

Configuring the State of an EXCEPLioN........cccvvvererrrr e 264
The TargetSite PrOPEITYcovccverrererererererereseserseseraesessesesserassessesessssessesassesassesassessssasssssssesssnesssnsnaes 264
The StaCKTraCe PrOPEITY......ccceveererrerererererereressereeseraesessesassessssessesessssassesassesassesasssssesassesassesasnsssesnaes 265
THe HEIPLINK PIOPEILYcevevereererereerereeserseresessssessssessessssessssessssessessssssessessssessssssssssssssssssssssessensssssnaes 265
The Data ProPerty ...t ss s r e sa s sa s a s s a st n s e s e se e e e e e nn e sn e nn e e s 266

System-Level Exceptions (System.SystemException)........cccovevercrcrcercscessessensennnns 268

Application-Level Exceptions (System.ApplicationException)............ccccerrereserserennenes 268
Building Custom EXCEPLIONS, TAKE T.......cccovrriecrirrreseriresee s sss s e sssssssssnens 269
Building Custom EXCEPLIONS, TAKE 2.......cccourueeeererrreesireseeseses s sse s sessssssssessssssssssssssssssnnns 271
Building Custom EXCEptions, TAKE 3.......ccccerierrrrrrrerre s se e sss s e se s e e ssssesassesns 272

Processing Multiple EXCEPLIONSccvcevvervrsenienserses s e ses e e e snsssssnssassassassnnns 273
General CatCh STAtEMENTS ..o s 276
RethroWing EXCEPLIONS.......ccceeeereecreecere et r e sae e s ra s sa e sae e s e sae e saesas e sae e sae e saenasaesasnenanaenes 276
INNEE EXCEPLIONSccveereererereeereeseraesersesessesesessssersesesassassssassesassessssessesessssassesassessssesssnesasassesansenseneres 277
TRE fINAIIY BIOCKcveuereeereerereresersesersesessesessessssessssessssssssssssessssessesssssassessssessssessssssssssssessssessesssssnaes 278
(=] 010 T (T 279

Debugging Unhandled Exceptions Using Visual Studiocccceververrirvenncensencensennne 280

SUMMEAIY ...ttt e s ae s a s sae e rep s e a e e s ae e s snnnnnnnnas 281

Chapter 8: Working with Interfaces.......cccunmmmmmmmmmmnmnnnssssssmmmmmssssssssssmmmm.s 283

Understanding INterface TYPES........ccvverrrerensnensnnnersse s s 283
Interface Types vS. ADSEract Base ClaSSesS.........covurerererereeserensesesessssssesessssssesesssssssesessssesesssssssssnnns 284

Defining Custom INTErfaces........cccvvrvririersrr e e e e 286

Implementing an INterfaceovveeeeeeese s e nns 288

Invoking Interface Members at the Object Level...........ccceevvreneirennsenesnssessssessesensenns 290
Obtaining Interface References: The as KEYWOId.........cocceerireiencnenenenesisisesesesesee e sesssseeens 291
Obtaining Interface References: The is Keyword (Updated)ccccovueeerernnencnennenesennesesesesseeeens 292

XV

CONTENTS

Interfaces AS Parameters.........cocccceiercrcscce e ss e e s sa e sa s sn e sn e e 293
Interfaces AS REtUIN VAIUESccccevererierenincrn e sns e sne e sns e s snnse s 295
Arrays of INterface TYPES......ccreeerererere e rre e sn e sa e sr e r e sr s sn e sn e nn e nn s 296
Implementing Interfaces Using Visual StUdio...........ccocvvreriiennniiennssesssessssessesenses 297
Explicit Interface Implementation ... ———- 299
Designing Interface HierarChies..........cccvcvercrcercesss st 301
Multiple Inheritance with Interface TYPES........ccvvrrrrecrernerr s 303
The IEnumerable and IEnumerator Interfaces.........c.ccevvrverrerrrsrcsss s 305
Building Iterator Methods with the yield KEYWOr(.............cccoereienenennesererisesesesesee e sesesssseseens 308
Building @ Named REIator...........cccoeereiererrnecstre et nnns 310
The ICloneable INTErfaCe..........cccovvereeeriernsere e 311
A More Elaborate Cloning EXAMPIE.........cccevrerrrerererererseresersssessesesssssssessssessssesssssssessssessssesssssssssssaes 313
The IComparable INterfacecccverrrrrcrsr s s 316
Specifying Multiple Sort Orders with [COMPArEr ... 319
Custom Properties and CuStom SOt TYPES......ccovvcrerrernerniers e sss e sss s 320
SUMMEAIY ...t a s s aesr s e r e s e n e e ae e s nnnnnnnnas 321

Part IV: Advanced C# Programmingcccusseesnmmssssssnmssssssssssssssnsnes 323

Chapter 9: Collections and GENEriCS.......uuummmmmmmmmmmmmmmmmsssnssssssssssssssssssssssssssssssns 325
The Motivation for Collection CIaSSES ... 325
The System.Collections NAMESPACEcoceceerermrenererrsesesesise e se s se s se s sesnns 327
A Survey of System.Collections.Specialized Namespace...........ccecveererniernsenesesesessesessessssessesesns 329
The Problems of Nongeneric COIlECtIONSccoceevvererrerenessesssesesesse e sessessesesnens 330
The ISSue 0f PEIfOIMANCE.........cccoereriririririrer e 330
The ISSUE OF TYPE SAFELYccovreiecrerirecre s e 333
A First Look at Generic COlIBCHIONS...........covrererererereserisisisisese s 336
The Role of Generic Type Parameterscccvvrvrverierinsnsensesses s e e e seeses 337
Specifying Type Parameters for Generic Classes/SIrUCIUIESccvvcvvvereererererererreressereesessesessesenaens 339
Specifying Type Parameters for GENEric MEMDEIS.........ccceeevererererieresrereesersesessesesersssessesessesessesasaens 340
Specifying Type Parameters for GENEriC INTEIaCES........ccveverererrererrererrerse e seres e ressessesessesessesesaens 340

xvi

CONTENTS

The System.Collections.Generic NameSPaCe..........ccccererrerereressesesessessesessesessesssssssens 342
Understanding Collection Initialization SYNtaXcocoveeerrneicnnnsescsssese s seeens 343
Working With the LISt<T> ClaSSccveeeerrreererireesesesre s e sessssssssessssssssesssssssssssssens 345
Working With the StACK<T> ClaSS......cccvrreererireesesisesesesesssseses s seses s sessssssssesssssssssssssens 346
Working with the QUEUE<T> ClaSS......cccerreerirernererereseseressssesesessssesesessssssessssssessssssssssesesssssssssssssens 347
Working with the SOrtedSet<T> Classccerrrererernnesesirnesesesse s sessssssesessens 348
Working with the Dictionary<TKey, TValUE> Class........cccorvrerrrerererenenseseniersssesse e sessesessessssessesesaes 350

The System.Collections.ObjectModel NameSpPaCec.ccvvrverrerrerrersersensessessessessessenaes 351
Working with 0bservableColECHON<T >ccovveverererererereresrerre s e res e sassessesessesassesassesassesssesaes 352

Creating Custom Generic Methods..........cccceceeereeenerere s 354
Inference of TYPe Parameters...... ..o e e sn s 356

Creating Custom Generic Structures and ClasSes.........ccocvverrrerrerrerseessesssessesssessensaenas 357
The default Keyword in GENEIiC COUE.........ccoeeererereerereeeseserse et 358

Constraining Type Parameters.........cccoverereninnncnsss s sse s sssssssssssssessssssssssenns 360
Examples USing the WHhere KBYWOTd ... sessessesessessssessessessesssssssessessessessesssssssenns 360
The Lack of Operator CONSIIAINTScoveververrrerererererereseresserseseraesessesassesassesassessssessessssesassessenesaes 362

SUMMAIY ...t a e b s ae e e a e e s a e e ae e e e nnn e naens 363

Chapter 10: Delegates, Events, and Lambda EXpressionsccccuusssennsssssannnns 365

Understanding the .NET Delegate TYPeccveverrrerrres s e sessss s sesnnns 365
Defining a Delegate TYPE iN CH......coveeeverererercree e sereererere s re s sse e sesse e s e sas e saesesaesesassasaesassesasnenes 366
The System.MulticastDelegate and System.Delegate Base Classes.........ccccverereerereerersererserensersenenas 369

The Simplest Possible Delegate EXamplecccccveerirerniennscnesnse e 370
Investigating a Delegate ODJECT.........cccevvrererrererere s rre e sse e sa s sae e ae e ae e sa s sa e e es 372

Sending Object State Notifications Using Delegates.........ccccovvvrvrvrcscssssessescencennnns 373
ENabling MURICASTINGcoeeerereceee e 376
Removing Targets from a Delegate’s INnvoCation LiSt...........cooeoernriicncnnnccsrseeseseseesesesseeeens 378
Method Group CONVErSiON SYNTAXcccerueiercrerrnienerirsesese s se e e sesssssssnens 379

Understanding Generic Delegates........cocvvrerererersnenes s s ses s sssssssssssssessassasssssenns 380
The Generic Action<> and FUNC<> DEIEJALESccecererererrererrerereree s s res e ree e rae e sae e s e saesesaenesaes 382

xvii

CONTENTS

Understanding CH# EVENTS ... s sn s s snsse s 384
The C# @VENT KEYWOI........cccoeieeeecerirecsesis e se s se s s nnssns 386
Events Under the HOO ... 387
Listening to INCOMING EVENTS.........ccoieeecrirsecsirtsesc s se s sss s ssssssssnnns 388
Simplifying Event Registration Using Visual StUdI0.........cccoveeeerrrencnrncserirseesesese s 389
Cleaning Up Event Invocation Using the C# 6.0 Null-Conditional Operatorccccovreiercrernsencnnns 391
Creating CuStom EVENt AFQUMENTS........ccoeurreieereriresesi et se s s sasssssssnnns 392
The Generic EventHandler<T> DEIegatecovvcerererenencsirsesesis e sessns 393

Understanding C# Anonymous Methodscccceveverrrnnsssrs s e e senenns 394
AcCeSSING LOCAI VATIADIEScoveereerereerererereressersesersesessessssessssessesessssessesassessssessssesssssssessssessssssssnaes 396

Understanding Lambda EXPreSSions..........cccceeeeeeresessessssssssssssssssssssssssssssssssssssssnenns 397
Dissecting a Lambda EXPreSSion..........ccernnscnnsenesne s sesss s ssssessssessssssssssssessssessssesns 400
Processing Arguments Within Multiple Statements...........cccocvrvrrncicn e 401
Lambda Expressions with Multiple (or Zero) Parameters...........ccoeveerrennnennscnnnscsne s 403
Retrofitting the CarEvents Example Using Lambda EXpPressions...........cccovvevnvcnnsnesnesenesessessnsenns 404
Lambdas and Expression-Bodied Members (Updated)............ooeoeeerriencnennieneserseeseseseesesesseeeas 404

1111 1P SRS 406

Chapter 11: Advanced C# Language Features..........ccovumummmmmsssssnsmsssssssnssssssnnnns 407

Understanding Indexer Methodsccococveeiveneniniennninessse e 407
Indexing Data USing STriNg VAIUES.........cccceurueiercrirrescrerisecseses s sasssssnnns 409
Overloading Indexer Methods........c.co e nas 411
Indexers with Multiple DIMENSIONScccourriiercrrrrrereserree s sas s nens 411
Indexer Definitions 0N INTErface TYPES......covvvercrerrrenerirrneeseres s eens 412

Understanding Operator Overloadingoccvevereerernnessesses s sessessessessessassessenns 412
Overloading BiNary OPErators........cccevererrererrerserersesersesesessssersssessesessesessessssessssessssesssssssesassessssesseneres 413
And What of the += and —= OPErators?ceeverrererrersreresrerseserse s sesessesessesessessssessssessssessssesaes 416
Overloading Unary OPEIatOrs.........ccceererererersersesersesessssessessssessssessesessesssssssssessssessesessssssssssssessssessenees 416
Overloading EQUAlity OPEIatOrScceeeverrererrereerersesersesesesssessssessesessesessessssessssessesesssssssssassessssessenerns 417
Overloading CompariSON OPEIatOrS........ccvcevererrerereerererereressersssessesessesessessssessssessesessssessssassessssessenerns 418
Final Thoughts Regarding Operator OVerloading...........cccccvrvereerererereserereseressersesessesessesessesassessssenes 418

xviii

CONTENTS

Understanding Custom Type CONVErSIONScccuevererserresmssessssssssssssessessssssssssssessssens 419
Recall: NUMerical CONVEISIONScocoeeerenenesereesesesesese s 419
Recall: Conversions Among Related Class TYPES......cccovrererererenereressnsenesessssssesessssssssesessesssessssssssnnns 419
Creating Custom Conversion ROULINESccceceerrrenerernesesessseesesesssssesessssssesessssssssessssssssesssssssssens 420
Additional Explicit Conversions for the SQUAre TYPE.........ccovrerererrneseseresesesesesse s seseseens 423
Defining Implicit CONVErsion ROULINES..........ccceervrerencririnccseses e ssens 424

Understanding Extension Methods..........ccccveveririnnnnrs s sessessessessenns 425
Defining EXtENSION MELNOUSccvuerererererererre e serae s saeres e see e sse e sesessesassesas e saesesassesassassesassesansenes 426
INVOKing EXtENSION MEthOTS........cccvueerererertrc et ree e se e sa e e sae e e e sae e s sas e sae e ns 427
Importing EXtension METhOdS........ccoeverererrrererere v sse e sas e saesesaesesassessesassesassenes 428
The IntelliSense of Extension Methods..........ccvnn 428
Extending Types Implementing Specific INTErfaces........ccvvverrrererererre e rer e sessesessesessenes 429

Understanding ANONYMOUS TYPEScceererrerrerressessessessessnsans 431
Defining an ANONYMOUS TYPE.....c.cciieierirerirere e se s n s b r e e e e sn s p e s 431
The Internal Representation of ANONYMOUS TYPES.......ccveerierrirenne e seenas 432
The Implementation of ToString() and GetHashCode()........c.ccevverrrrrerriernierncre e 434
The Semantics of Equality for ANONYMOUS TYPEScoverrerrrieririere e se e ssssessssessesesnes 434
Anonymous Types Containing ANONYMOUS TYPESccoueurercrermrenermresesesesessssesesesssssesesssssesessssssesssssns 436

Working With POINTEr TYPES......ccvcererrriernsiresrssesss e ses s s ssesesssssssssnens 436
The UNSAfE KEYWOIU........ccoeeeeieecirirecse e p e nnnn s 438
Working with the * and & OPErators........c.occerrriescrnese s 440
An Unsafe (and Safe) SWap FUNCHION ..o 441
Field Access via Pointers (the => OPErator).........c.cccecerrercsesennsesesessse s sesssseeens 442
The StaCKallOC KEYWOIT........cccueueeerireeeirireeer e e 442
Pinning a Type via the fixed KEYWOId............ccoeeieireeeeeecers et 443
The SIZEOT KEYWOI ...t p et e e nn s 444

E3 1111 P2 7S 444

Chapter 12: LINQ t0 Objects......ccuscmmmmmsssnmnmmssssnsnmmssssssnssssssssnssssssssssssssssnnssssssnnnss 445

LINQ-Specific Programming CONSIIUCES.........c.ccerermrrernsenennsse s e s sesse s 445
Implicit Typing of LOCAI VAADIESccorvererrereerereereresereresersssessesessesessessssessssessssessssessssessessssesssnenes 446
Object and Collection Initialization SYNTAX..........cccvvrverrierrierr s se e rassesaesenes 446

CONTENTS

Lambda EXPrESSIONS......c.ccivirirerere e ssesse e ssessessessessesaesassassassassassassassssssssssssssssssesssssssssssssssssenes 447
EXtENSion MEthoOS ..o ———— 448
LT 13 T] T 449
Understanding the Role of LINQ ... sn e e e 449
LINQ Expressions Are STrongly TYPEUcccoeeececeermreicnireneesesesee e s sesessssssesessssssssessssssssesssssssssnnns 450
The Core LINQ ASSEMDIIES........cocvvereriririninirisirisesissi s 450
Applying LINQ Queries to Primitive ArTaysc.ccocueeeenrresnsesesessessssssessssessessssessssesses 451
Once Again, Using EXtension Methodscceerrenersnssesensnsesesesssssessssssssssessssssssesssssssssssssssssnnns 453
Once Again, WithoUt LINQcoeeeeerrieecrerssesc s s e s sesesessssssssesssssssssssssssssssssssssssssssssssasnns 453
Reflecting Over @ LINQ RESUIL Setcccocvrrrrererrrrneeririssesesesse e sessssssesnssssssssessssssssssssssssssnns 454
LINQ and Implicitly Typed LOCal VAiADIESccceeeerererrrererersseesesssssssessssssssessssssssssssssssssssssssssssnnns 455
LINQ and EXtension MEthOdS.........c.coceeeeerererenenereerereresee e enens 457
The Role of Deferred EXBCULIONcococeeeerererererererereresese e seseseseenes 458
The Role of IMMmediate EXECULION ... ees 459
Returning the Result of @ LINQ QUETY.......cccocecerrescreneerinssesess e sessssesessssesessssenens 460
Returning LINQ Results via Immediate EXECULIONccocevrievervcrerererere e sesae s sessesassenes 461
Applying LINQ Queries to Collection ODJECtS........cccceverereresrere e 462
Accessing Contained SUDODJECLS ... 462
Applying LINQ Queries to Nongeneric COllECHONScccocvurerencrerrnererirsee e 463
Filtering Data USiNg OfTYPESTS() cooveerreerererreeneririsee s sss e e s enns 464
Investigating the C# LINQ Query Operators...........ccuoeevrereressessssesessssessessssessssessessnsenns 465
BasSiC SEIECHON SYNTAXccoceerrirerererrrreeseresrsse s r s e e s se s s ne s ae e nansnsnnnes 466
0btaining SUDSEtS Of DALAcccceeerrieererrre e nr s e 467
Projecting NeW Data TYPESoveecrerrreereresrsesessssssssesessssssesessssssssessassnns 468
Obtaining Counts USiNg ENUMETADIEccoveceeerrereeererrseeseresse s s ssssssssesssssssssnnns 469
ReVErSiNg RESUIL SETS........ccocrerrrerererrsrsesirssssese s sssss s e e ssss s s ssss e s ssssesssssssssssasnnes 470
SOMtING EXPIESSIONS.....vceeerrireisesrssssesessssssssesessssesesessssesesessessssssssssssssssasenes 470
LINQ As a Better Venn Diagramming TOO..........covrerererenesesesesssssesssssssessssssssssssssssssssssssssssssssssssssnnns 471
ReMOVING DUPICALESceveeeererrrreererisreesesessse s s sss e s se s s e e s ss s s ssss e e ssssesnssssnssnsnsnnes 472
LINQ Aggregation OPErationS.........ccceuecererersssesesssssssesessssssssessssssssessnnns 472

XX

CONTENTS

The Internal Representation of LINQ Query Statements..........cccccvveevieriennicnnscnennnnens 473
Building Query Expressions with Query Operators (ReviSited).........coouoeeererrererernesesesenesesesensseneens 474
Building Query Expressions Using the Enumerable Type and Lambda Expressions..........c.cceevcerenune 474
Building Query Expressions Using the Enumerable Type and Anonymous Methodscccccceuuee. 476
Building Query Expressions Using the Enumerable Type and Raw Delegates..........ccocovevercrerrnicncnnns 476

E3 1111 P2 7S 478

Chapter 13: Understanding Object Lifetime.........cccccccnmnnnnemmmnnsssnnmnnssssnnnsssssnnns 479

Classes, Objects, and REfEIrENCEScccererererreererrsrrerree s sessesssssssssssassassassassassassasenns 479

The Basics of Object Lifetime.........ccccvcvcrirsnsrsrssr s 480
LI TC 10 T 481
Setting Object References t0 NUIL.............cooerereeeeeree e 483

The Role of Application ROOLS..........ccccvcrverrerrnninsrserser e 483

Understanding Object GEnerations..........cccvcevererenenens s s ses s sessssssssessenns 485

Concurrent Garbage Collection Prior t0 .NET 4.0........cccoeeeeeeerece e ses s snnnns 486

Background Garbage Collection Under .NET 4.0 and Beyondccoccvverververceriensnnns 487

The SYSTEM.GC TYPE...cecerererrerrerrer sttt se s sn e e sn e sn e e sn s nn e n e sn e n s 487
Forcing @ Garbage COIIECLION..........cccverererererrreree st ree s s e e sae e sse e sse e s e sas e sae e sae e saesasaesassesannenes 488

Building Finalizable ODJECSccocvcrrrcr s 491
Overriding System.ObjeCt.FINAliZE()........ccuverrrrererrerrrrrerre e e r s 492
Detailing the Finalization ProCESS ..o s s sre s 494

Building Disposable ODJECTS..........ccoverenrseresncrner et 494
Reusing the C# USING KEYWOIT............oeeeererrrecrisrsesese s esssss e s e ssssssssssssssssasnnns 497

Building Finalizable and Disposable TYPES.........ccrvrrrrerrersensesses s ses s sessesssssessessenns 498
A Formalized DiSposal PALtEINcccccevereriererrerererererereseressessesessesessesessessssessssessssessessssessesessssnaes 499

Understanding Lazy Object Instantiation...........cccooeeeeeeeeeseccscce s 501
Customizing the Creation of the Lazy Data...........ccocvrernrinnrcnrrc e 504

SUMMEAIY ...t a s ae e r e e s a e e ae e s nnnnnnnas 505

xxi

CONTENTS

Part V: Programming with .NET Assemblies........cccccernssssnnccnnnnnessnns 507

Chapter 14: Building and Configuring Class Libraries...........ummmmmmmissmismmnn. 509
Defining Custom NamESPACESccvceerrerrenmsereneresrsse s sss s sss e ssesessessssssnes 509
Resolving Name Clashes with Fully Qualified Namesccoeeeernrniencnnnesesessee s 511
Resolving Name Clashes With AlIaSEScccceceerreenerernenesissese s sesssssssnns 513
Creating Nested NAMESPACEScccovueerererreseserisssssesesssse e sesss s sesssss s e ssssssssssssssssesssssssasnns 514
The Default Namespace 0f Visual StUAI0..........coveeererereiescrinresesir e 515
The Role of .NET ASSEMDIIES........ccccovrirmiiiii s 516
Assemblies Promote Code REUSE...........cvcnrrrininssssnisssssss s ssssssns 517
Assemblies Establish a TYPe BOUNGAIYccoceverererererererereerersesersesesseresessssessssessessssessssessssessssssaes 517
Assemblies Are Versionable UNItScovnsnsssns 517
Assemblies Are Self-DESCHDINGccvevrrererrerrrerereresererssersesersesessesessesassessssesssssssessssessssessssessssssaes 517
Assemblies Are CoNfigurable............couirncnn s ————————— 518
Understanding the Format of @ .NET ASSEMDIY.......ccoceoereeeeesece e 518
The Windows File HEAET ... sssesesenes 518
L I e T o 520
CIL Code, Type Metadata, and the Assembly Manifest............cccccvrvrernnnniennnnnn e 520
Optional ASSEMBIY RESOUITESccucuiiiciiicssi bbb bbb 521
Building and Consuming Custom CIass Library..........ccccuceenrennsesesssesnsesesessessssesnes 521
EXpIoring the Manifest ..o 524
EXPIOFNG TE ClL.......eeeeeeeeeceetseeer st a e nannn e e e 527
Exploring the Type Metadata ..o 528
Building @ C# Client APPlICALION...........ccceeeeerreecrirrees s eeas 529
Building a Visual Basic Client APPlICALION..........ccoeererernecrirseesesessese e sesssseens 530
Cross-Language INheritance in ACHON..........ccceeerercrernecse e 532
Understanding Private ASSEMDIIES........ccceerereerererrrr e ses s ses e s sessassassassenns 533
The Identity of @ Private ASSEMDBIYccccevrierrrererrerererereres e ses e sas e rae e saesessesessesassesaesesasesas 533
Understanding the Probing PrOCESScccvrrererererererereresersssessesessesessessssessssessesessssssssssssessssessenenes 533
Configuring Private ASSEMDBIIESccverercerrerr e sa e s e ae e s e sa e e e es 534
The Role of the APP.CONTIG File.......ccvererererererrere e sere s seresserseserse e e sas e sas e sassesassassesassesassesasenaes 536

xxii

CONTENTS

Understanding Shared ASSEMDBIIESc.ccoceerverenmnsernsesessse s 538
The Global ASSEMDIY CACRE.........ccorrreererereerer e 539
Understanding STrong NAMES..........coveerererenencnssesesesesee s s sessssssssesssssssssnnes 541
Generating Strong Names at the Command Lingoccccerreiencnnnnescnrneseses s 542
Generating Strong Names Using Visual StUAI0..........cccovreeererenenencrreescsessse e eeens 544
Installing Strongly Named Assemblies t0 the GAC ... 546

Consuming a Shared ASSEMDIYccccvererererere e sas e e e sassassaseens 548
Exploring the Manifest of SharedCarLiDCIient...........ccccovevrierrrcrerre st re e e ens 550

Configuring Shared ASSEMDIIEScccceeererererere e snesnennenens 550
Freezing the Current Shared ASSEMDBIY ... s 551
Building a Shared Assembly Version 2.0.0.0 ..o 552
Dynamically Redirecting to Specific Versions of a Shared ASSEmDbIYccocvrrieienenrcscscrenniencens 554

Understanding Publisher Policy ASSEMDIIEScccccerereressernnnsesessesesesessssessesessens 555
Disabling PUDIISNEE POLICYccceeoeeerireecririsescs s se s e se s sssesssssssssnnes 556

Understanding the <codeBase> Elementcccveveverrrnncnenses s e sessensenns 557

The System.Configuration NameSPaCecccvverrerrersersmssesses s ses s s ses s sennes 558

The Configuration File Schema Documentation.........c.cccoeevirnnnennsennesssesssesenennens 560

E3 1111 1P 7 560

Chapter 15: Type Reflection, Late Binding, and Attribute-Based

ProgrammiNg..iccciissssssssmmmmmmssssssssssnnnmmesssssssssnssnnnnsesssssssssnnnnnnnesssssssssnnnnnnnsessssssnn 561

The Necessity of Type Metadata............cccvcrvrsrcrcrcscs s s 561
Viewing (Partial) Metadata for the EngineState Enumerationccceovvnncnecnennccsnscssscnenene, 562
Viewing (Partial) Metadata for the Car TYPEccccverrerniennscre s se e sss e sss e sesnas 563
EXamining @ TYPERETcvoeece e e e e s 565
Documenting the Defining ASSEMDBIY..........corirrcricrrr s 565
Documenting Referenced ASSEMDIIES ..o e 565
Documenting STring LItEralS ... s sn s sns e sss e sss s 566

Understanding REfleCtion............ccoeeicernnnenscressress e 566
The SYSTEM.TYPE ClASS......cccerrrreererireererisee s e r e nnnnans 567
Obtaining a Type Reference Using System.ObjeCt.GEITYPE()covrererrrerererrnererereseesesessesesesessseeens 568

xxiii

CONTENTS

Obtaining a Type Reference USiNg tYPEOf()......corvrerrererrreriererieresrersesersesessesessessssessesessssessssessessssessenenns 568
Obtaining a Type Reference Using System.Type.GEtTYPE()cevveerrererrererererseressersesersesessssessesessessenens 569
Building a Custom Metadata VIEWErccocvercercercrcr e snnnns 569
Reflecting 0n MEthOAS..........corureeeee e 570
Reflecting on Fields and Properties.........couvocrerrencnensesesesesese e sessssssssnns 570
Reflecting on Implemented INTErfaces...........cooeerereicrerrcererr e 571
Displaying Various 0dds and ENGScooeeererernnencninnecsesesee s e sssesssessssssssessssssssssens 571
IMPIEMENTING MAIN()....cceerieceerereerere e e e e e ns e e e 572
Reflecting 0N GENEIIC TYPES ...covoueceerereeeeririee et e s s s ns e 573
Reflecting on Method Parameters and Return ValUuesccoccvevrecncsncnsscns e 574
Dynamically Loading ASSEMDIIESccecveeeenrsernseresnssessssesessssesss s ssesessessssesnes 575
Reflecting on Shared ASSEMDIIES..........covrrrrinnnr s 578
Understanding Late Binding.........cccooeeeeererenesecese s sss e ssssssssssnsssssnssnssnssssnnnns 580
The SYSTEM.ACHVALON CIASScoceerereecerirceireree st 580
Invoking Methods with NO Parameters...........ccooeeennncncsrseescsess e 581
Invoking Methods With Parameters..........oorercncnnnccserr et 582
Understanding the Role of .NET AttribULESccceererrrerennserese e 583
ALEFIDULE CONSUMETS.......cecccccerccreresesesese e se e ne e e e e e e e enes 584
Applying ARFDULES IN Gceeeeeeeeseee s esp s nnnn s 585
C# Attribute Shorthand NOTALION............ccceeeeeeecrerecrerer e 587
Specifying Constructor Parameters for AtribULES.........cccoveceerrncscr s 587
The Obsolete ALrDULE i ACHIONcocoeeeeeeeee e 587
Building Custom ARFDULES........ccocvverierrirrerr s sn e e 588
Applying CUSTOM ATFDULEScoveereeere e st rae s se s s sae e sae e s sas e sae e sae e saesasae e s e sae e saeenaes 589
NamMEd Property SYNTAX.......cocvccrerererererereresersesersssessesessesessessssessssessssesssssssessssessssesssssssssassesassesssnenes 589
Restricting AtriDULE USAQE.......cccvrerereririrere e sse e sse s s s s st sa e sassae st e ssssasssssssssssan s 590
Assembly-Level ALHDULEScccceeerererercce e sn s sn s 591
The Visual Studio ASSemDBIYINFO.CS File.........cccoeoerreerereeerrre s 592
Reflecting on Attributes Using Early Binding.........c.ccooeeviernnmsesnscssssssessnsesesessesssennes 593
Reflecting on Attributes Using Late Binding..........cccuevrerrersersessessesssssessessessesssssessennenns 594
Putting Reflection, Late Binding, and Custom Attributes in Perspective...........ccccueucnne 996

XXiv

CONTENTS

Building an Extendable Application...........ccccvcrververrerserses s 597
Building the Multiproject ExtendableApp SOIULIONcccoceereiencrrnescrree e 597
Building CommonSnappableTYPeS.dll ... 598
Adding Projects t0 the SOIULIONcccerieccrrrecrerre s 599
Adding Project REFEIEINCEScccceererecreriseeeresseese s sss s nsnsns 600
BUIldINg the CH# SNAP-IN......ccoee s 601
Building the Visual BasiC SNaP-IN..........ccccoriierrrnnencnirneesessese e sssssssessssssssesssssssssnnns 601
Setting the Startup ProjECT ... s 602
Setting the Project BUild OFercccov it snsnns 603
Building the Extendable Console ApPlICALioNccccevieceerenescrcrreescs e 604

E3 1111 P2 7S 607

Chapter 16: Dynamic Types and the Dynamic Language Runtimeccuseennue 609

The Role of the C# dynamic KEYWOId..........c.ccvverververrerrersennerserses s ses e e e e 609
Calling Members on Dynamically Declared Data............ccccecvrererrerererereneresseressessesessesessesessesessessssens 611
The Role of the Microsoft.CSharp.dll ASSEMDIY.........cccoverrierrrererre e neenes 612
The Scope of the dynamic KEYWOITccveeveerererererererereressersesersesessssassesssessssesssssssessssessesssssesaes 613
Limitations of the dynamic KEYWOITccceerererererrerereresseressessesessssessesssessesessssesssssssesassessesenes 614
Practical Uses of the dynamic KEYWOITccecveerereriereniereerereesersesessesessessssessssessesessssessesassessenenes 614

The Role of the Dynamic Language RUNtIMEccocvevercercercenses s 615
The Role Of EXPreSSION TrEES....cuevuererrerrersersessessessesssassasssssens 616
The Role of the System.Dynamic NAMESPACE.........ccceererrerirrenesire e sesse e sessessssessssessesesnes 616
Dynamic Runtime LooKup Of EXPresSion TrEES.......cccvevrerriernrcrre s sessesssssssssessssessssenns 617

Simplifying Late-Bound Calls Using Dynamic TYPEScccueerererserresesseressessesessessnsensens 617
Leveraging the dynamic Keyword t0 Pass ArgUMENLSccoeevererernnenesessssssessssssssesessssesesesssssssens 618

Simplifying COM Interoperability Using Dynamic Data..........c.ccoeevvrverrrnrsersensensensennnns 621
The Role of Primary Interop ASSEMDIIES........ccoveerrerrerererereres e se e ras e saesesse e saesassesassesaesesaes 622
Embedding Interop Metadataccceeverererrerereresre s rsesersesessesesse e e ssesessesessssessesassesssnenes 623
Common COM Interop Pain POINES........ccccvceverrerererenere e reseressereesersesessesessessssessssessssessssessesassessssenes 624

COM Interop Using C# DynamicC Data.........cccoceeerererenesessessssse s sssssssssssssnssnssnssnsnnns 625
COM interop Without C# Dynamic Datacccecceererenniennicsncss e ses s ssssesns 628

SUMMEAIY ...t a s ae e r e e s a e e ae e s nnnnnnnas 629

CONTENTS

Chapter 17: Processes, AppDomains, and Object Contexts.......cccunsssnnmnennrrnssnnss 631

The Role of @ WiNdOWS ProCESScccccvrrmmnmmnissmnssssssssssssss s sssssss s 631
The Role Of TRIEAMS.........cccvvrirrisinissisisss s 632
Interacting with Processes Under the .NET Platform............ccoeerienninennscnnsescnnnnenns 633
Enumerating RUNNING PrOCESSES.......veeeererrrecrtrisese s ses s e sssssssessssssssssssssssssnnns 635
Investigating @ SPECifiC PrOCESS......coveerererrreerirrese st nns 636
Investigating a Process’s THread Set.........ccccerrencnnnecssrese s seenns 637
Investigating a Process’s MOUUIE Set...........ccrirercnrnccrirs e 639
Starting and Stopping Processes Programmaticallyccocoveencnnncncsennssesesesee e 640
Controlling Process Startup Using the ProcessStartinfo Class.........cccccevrverrvernsnennenncesenenenenns 641
Understanding .NET Application DOMaINS.........ccceceverereersnessessessessessessesssssessessessensenns 643
The System.APPDOMAIN ClASS......cccererererererrererrersererererserssersssessesessssessessssessssessssessessssessssessesessssssaes 643
Interacting with the Default Application Domain..........cccoceeeeeresesesssesee s sessesnenns 645
Enumerating Loaded ASSEMDIIESccccvverrierineneseresne s se s s sn s snssssnssessssenns 646
Receiving Assembly Load NotifiCations..........ccovcerevrecnicsnc s 647
Creating New Application DOMAINS.........cccceeeeeereresere e ses e e ses e s s snnenns 648
Loading Assemblies into Custom Application DOMAINS..........c.coeeeeererenneneresenssesesesesesesesesesesessseseens 650
Programmatically Unloading APPDOMAINScceeerererenenesesesseesesesssssesessssssssessssssssessssssssssssssssssens 651
Understanding Object Context Boundaries..........ccccocerereerrressssensessessessessessesssssessensenns 652
Context-Agile and ConteXt-BoUNG TYPEScovvereerereerereerererereressersesersesessesessessssessesessessssssessessssessenens 653
Defining a Context-Bound ODJECLcovceverrereererererrrere s s rse e rse e sseras e saesesassesaesesaesassesassenes 654
Inspecting an ObECt’S CONEXLccverercererrere ettt re e e s e ae e s e e ra e sae e s 654
Summarizing Processes, AppDomains, and Context............ccceevverrenniesnscsesensessnsennens 656
1111 11 SRS 656
Chapter 18: Understanding CIL and the Role of Dynamic Assemblies............... 657
Motivations for Learning the Grammar of CILcccocrirrrcrsscs s 657
Examining CIL Directives, Attributes, and OpCodes..........ccvvvverrerrersersessersensessessessensenns 658
The Role Of CIL DIFBCHIVES......ucviirirsisissssrisissss s 659
The Role of CIL AHHDULEScccvciriisiisssiicss s 659

XXVi

CONTENTS

The ROIE Of CIL OPCOUES.....ccueuereeerrereraererseressesssersesersessssessssessssessssssssssssessssessssesssssssessssessssessssessssnaes 659
The CIL Opcode/CIL Mnemonic DiStiNCLION..........cccvevererierrerr et res e see e sae e e ssesasesaesesassenaes 659
Pushing and Popping: The Stack-Based Nature of CIL...........cccovrvnenrnnennsncnennenens 660
Understanding Round-Trip ENGINEEIINGcoevreveereerererie s ses e e e e e sessassssnnns 662
The Role 0f CIL COAE LADEIScoeereereeeerereererer e seees 665
Interacting with CIL: Modifying @n *.il File........cocuvieeerrneneserneesessssssesesesssssseses s sessssesssessssssssnns 665
Compiling CIL Code USING ilaSM.EXEccceererrrrererrrrssesererssssesessssssesessssssssesssssssssssssssssssssssssssssssssssssanns 667
THe ROIE Of PEVEIITY.EXE ..eeveeereerereree s rere s res e sae e s e ras e ae e s se s sa s sae e saesesaesesae e ssesaesesaennans 668
Understanding CIL Directives and AttribUteS........cccocevererrresrs s seneens 668
Specifying Externally Referenced ASSEMDBIIES iN ClL.........ccccoeveriererverenseresereseseseseressessssessssessesesaens 668
Defining the Current ASSEMDBIY iN CILccovverrererererrrerererersesersesessesessesassesssessesesssssssssassesassessenenes 669
Defining NameSPACES N ClL........cccoeverererrererreresersesesesessesesessssersesessesesssssssessssessssessssssssssssessssessssenes 670
Defining Class TYPES iN ClL.......cceeeveerererereresrereesersesessesessesssessssessssessesesssssssessssessssssssssssssassessssessenenes 670
Defining and Implementing INterfaces iN ClL........cccccvevviererieresrererereseseseseresersesessssessssessesessessesenes 672
Defining STrUCTUIES N ClL.......ccceveereererererereserseserse s seesesseres e ss s e ssesessesessesassesassessssesassesassassesassesssnenes 672
Defining ENUMS iN ClL......cccceeeeerererecrirerereressersesessssessesessesessessssessssessssesssssssessssessssesssssssssassesassesssnenes 673
Defining GENEIICS N CILcoveereeereerererereressersssersssessesessesassessssessssessssesssssssesassessssesssssssssassesassesssneres 673
Compiling the CILTYPES.Il FIlEcveceeueereererererrereeserts st rse s resese s e ssesessesessssassesasessssessssessssassesassesssnenes 674
.NET Base Class Library, C#, and CIL Data Type Mappings.........cccceeevrerrerrersersersessensenns 675
Defining Type Members in ClL..........ccovvrverinnnnrrerser s se s e ses e sessnens 675
Defining Field Data in ClLococeeerieeeererresesessssssse e sesssssessssssssssssssssssssssssssssssssssssasnns 676
Defining Type CoNSIrUCTIOrS iN ClL.........cccoeeirriecrrersssese e sn s sss e e ssssssnssnnes 676
Defining PropertieS iN ClL.......ooccceeeeescrrrsesessssssse s ssesesssasnes 677
Defining Member Parameters.........coveeeerrnsenesrsrsssesesssssese s sesss s s sssssssssssssssssssssssssssssssssssnns 678
EXamining CIL OPCOUES......ccccvuerererrrere s s sss s sn s sns s sn s sne e s nnes 678
The .maxstack DIrECHIVEc.covrrrnsisnn i ——————— 681
Declaring Local Variables in CILcccovcevrrererererereseseressersssessesessesesssssssessssessssesssssssssassesassesssnenes 681
Mapping Parameters to Local Variables in CILccccecvveveriereerereeseresereressesessessesessssessesessesessessssenes 682
The Hidden this REfErENCEc.covvvrirnninnnn 682
Representing lteration CONSIIUCES iN CILcoeveeeererererererereerereesersesessesesesassersesessssessssessesassessssenes 683

xxvii

CONTENTS

Building a .NET Assembly With CIL.........ccoccorenriernnrennserssrsessse s snseenes 684
BUIIAING CILCAIS.QIL......cvveeecerereeeseseeesesrs e ss s s e s s s s e s s se s e e snsnssnens 684
BUildiNg CILCArCHENT.EXEcocoeeeeeeeeeseeese e 687

Understanding Dynamic ASSEMDBIIES........cccvererererreirnres s ses e ses e sessessassessassassasnnns 688
Exploring the System.Reflection.Emit NameSPaCe.........ccccverrererrererereerererereresersesessesessesessesassessssenes 689
The Role of the System.Reflection.Emit.ILGENErator............ccoveereerereereriererrereereree e reresesseseraesesaes 690
Emitting @ Dynamic ASSEMDIYccccvvererrererrerserersesersesesesssersssessesessesesssssssessssessssessessssssassessssesseneres 691
Emitting the Assembly and MOAUIE Set..........ccovrrerrerrierrerer e rse e sae e s e sassesaesenes 693
The Role of the ModUIEBUIIAEN TYPEcovvuererereererrererererereseressersesessssessessssesssessssessessssessssessessssenaes 694
Emitting the HelloClass Type and the String Member Variable...........cccoevrverrvrerrerre e 695
EMitting the CONSIIUCTOIS.......cceeereecere e rtr et s ree s re e sa s sae e s ae e sae e sae e s sae e sae e sae e saesasnesaenenes 696
Emitting the SayHello() MEhOdcccovrerrrere vt ree e sse e sa e sae e s e e e e sas e saenees 697
Using the Dynamically Generated ASSEMDIYccccevereriereriererrereerersesesseseseressessesessesessssessesassessenenns 697

BT 111 112 SRS 698

Part VI: Introducing the .NET Base Class Libraries....ccccuusssssssssssnnss 699

Chapter 19: Multithreaded, Parallel, and Async Programmingcsssesssssssssss 701
The Process/AppDomain/Context/Thread Relationship..........ccccvvvvrverrerinsnsensensensennn 701
The Problem Of CONCUITENCYcceerererererereressersesersesersessssersssessesesssssssessssessssessssssssssssessssessensssssssaes 702
The Role of Thread SYNCRroNization ... 703
A Brief Review of the .NET Delegatecccooevereeerenese e sns e 703
The Asynchronous Nature of Delegatescccoeeiennsrennscns s 705
The Beginlnvoke() and EndInvoke() Methods..........ccocerreercriresencnisne e sesessns 706
The System.IASYNCRESUIt INTEITACEccovoueeerecer e 706
Invoking @ Method ASYNCRIONOUSIY........ccoerereereereerer e see e e e e e e saesaenns 707
Synchronizing the Calling TRFEAdcccvererereriererrersrereserereseresersesessesessesessesessessssessesesssssssesasaens 708
The Role of the AsyncCallback DEIEgatecccvererererererrerer e ras e see e e sae e e saesesaesenaes 709
The Role 0f the ASYNCRESUIL CIASSccceeererererrerrerererereresersssessesessesessessssessssesssssssessssessssesssssssesssaes 711
Passing and Receiving Custom State Data...........ccccocvevrierricrsrererere s resessesesse e sessesessessssenes 712
The System.Threading NameSPaCE.........ccecereerrerrersersmssesss s ses s sn e snssnnses 713

xxviii

CONTENTS

The System.Threading.Thread Class..........c.ccovrerenmrserensesessssesesse s sessessssessens 714
Obtaining Statistics About the Current Thread of EXECULION..........cccoeerereriennccrn e 715
THe NaME PIOPEITY ..ot e p e p e nnnpns 716
THE PriOrity PrOPEITY...c.ccvecceereeeeresirse et p e ne e nn s 77

Manually Creating Secondary Threads...........cccvverrerrersersensessessesses s sessessessessessesssssenns 718
Working with the ThreadStart DElegate..........ccecvererererererererrererere s reseressesaesessesessesessessssessesesaes 718
Working with the ParameterizedThreadStart Delegatec.ccccvevrereriererrereererenereseseressersssessesenaes 720
The AutoRESELEVENT ClASScouviiiririisiiriisss s 721
Foreground Threads and Background THreads...........cccvceverirennneennnisnenses s sessssssssssssssssssssssssnses 722

The ISSuE Of CONCUITENCY.ccccercererrirsessessesses s s e s s s s e sn e sn s sn s sn s snssnssnssnasnnsns 723
Synchronization Using the C# I0CK KEYWOIcccoeeiiieirennesnesssess e sessssessssesssssssens 726
Synchronization Using the System.Threading.Monitor TYpe.........ccoocevevrnrnnsnennie e senaens 728
Synchronization Using the System.Threading.Interlocked TYpe........cccocvevrenriennicnsscre e 729
Synchronization Using the [Synchronization] Attribute ... 730

Programming with Timer CallDACKSc.ccoeeriernnerennsserssssesesess s sssesnes 730
Using @ STand-AloNe DISCAr.........c.coreerererreiererrrrseseseseseese s sesss e sessssssesesssss s sessssssssssssssssssnns 732

Understanding the CLR ThreadPool............cocevereerinessnes s e e sessessssssssasssssasenns 732

Parallel Programming Using the Task Parallel Librarycccoocvervrescscscescesceecennns 734
The System.Threading.Tasks NAMESPACEccceeiererreerererire e 735
The Role of the Parallel ClIass ... ssssseses 735
Data Parallelism with the Parallel Class..........ccovrnnnnnnninnnssssss s 736
Accessing Ul Elements on Secondary TRreads..........c.ococeceerrencnennescsinsescsesise s 739
LI TC Q0T 740
Handling Cancellation REQUEST..........ccceererrircrrcrr e sn e r s 740
Task Parallelism Using the Parallel Class...........ccouvrernernennncnssine s e sessessssessssessesesnes 742

Parallel LINQ Queries (PLINQ)........ccoerurerermreserrsseesessssesesssessssssessssssessssssssssssssnsssssenens 745
Opting in £0 @ PLINQ QUETYceeeeeceeere e s 746
Cancelling @ PLINQ QUETYcccoeveerererereresereseseseseesesesese e e e s s sssssssssessanas 746

Asynchronous Calls with the async KEeyword............cccocevvvrrrrnvennnnessesses s sessennns 748
A First Look at the C# async and await KEYWOIdS...........ccevrererrererererererensersssessesessesessessssessssessenesaes 748
Naming Conventions for ASynchronous Methodsccccvrvererrerererererererseresserse e sersesessesessesessenes 750

CONTENTS

Async Methods Returning Void...........cooeviveinnnnnninsirsrr s ses e e e sessesssssasssssasssssens 750
Async Methods with MURIPIE AWAILS.........cccvvrvrirrrrrrr s n s 751
Calling Async Methods from Non-async Methods..........ccccvvvererrerereresenssesseressessssessssessesessesessessenees 751
Await in catch and finally BIOCKS.........cccuvivirrnrrnsir st ss s se e e sa s sn s sassae s 752
Generalized ASync RetUrn TYPES (NEW) ...ccucveeereerereerereerereresersssessesessesesssssssessssessesessssssssssssessssesseneres 752
LOCAI FUNCLIONS (NBW)vevieiieeieerie et ae e s s s sre e e sae s saesae s sae st e st sa e saesae st e sassassssssssssssnnes 753
Wrapping Up async and @Wait...........ccuverrrnnnnennnsinsesses s sessssssssssssssessessssssssssssssssssssssssssasssssasssssens 754
1111 11 SRS 754
Chapter 20: File 1/0 and Object Serialization............ccussmeemeennnnnmmmmssssssnmmm. 755
Exploring the System.I0 Namespaceccccevverrirenniennsessesse e ssseenes 755
The Directory(Info) and File(INfo) TYPES......cccerverererererseresiseres s ssesesnens 756
The Abstract FileSystemInfo Base ClaSscccuurerererrnieresirsnesesesssesesesessssssessssssssessssssssesssssssssssssens 757
Working with the DirectoryInfo TYPec.ccecvvrvrrrrerrrrr e 758
Enumerating Files with the Directorylnfo TYPE.....ccceevevrereriererrere e rere s re e rsesesassesaesassesasnenes 759
Creating Subdirectories with the DirectoryInfo TYPEcccevveererrererererere s re e resseseeenes 760
Working with the DireCtory TYPecccvcrrrsrserserseres s 761
Working with the Drivelnfo Class TYPEcccovverermrennsmsssssesesss s sessssssssssens 762
Working with the FileInfo Class..........cvvvrrrnnninnensinsersesses s sss e e sesssssassssses 763
The FileInfo.Create() MEthodc.cceveererere st ras e sae e ae e s e s sa e e sae e naen 764
The FileInfo.0pen() MEENOM.cccverrererererereerereseraesessesesersesessesessesessesassesassessssessesassessssessssesassnaes 765
The Filelnfo.OpenRead() and Filelnfo.OpenWrite() MEthodsc..cccvevereererrererrereesereeseseresersssessesenas 766
The Filelnfo.0penText() MEthOUcccoveverrerererererererereseres e sersesessesassesas e sassessesassesassesasesasnenaes 767
The Filelnfo.CreateText() and FileInfo.AppendText() Methods.........cccceereereriererrerenerenereressersesersenenes 767
Working with the File TYPEcccecrcrcrcersr s 767
Additional File-Centric MEMDErS ... 768
The Abstract Stream Class ... s 770
Working With FIlESIrEAMSccceerirecrerreccrese s 771
Working with StreamWriters and StreamReaders...........ccccvvrvervrnnsennnsen s s s s e 772
L LT o T (o= = G - 773
Reading from @ TEXE FIlBcvueeeeereererertrerer e sae e saeres e sa s e sae e sae e saesasaesas e saesesae e sassassesassesasnenes 774
Directly Creating StreamWriter/StreamBeader TYPES.......ccovvererrerererererererseressersesessesessesessessssesseenes 775

XXX

CONTENTS

Working with StringWriters and StringReadersc.ccveeviernneresssesessssesessessesennens 775
Working with BinaryWriters and BinaryReadersccocvvrvrvervrnnsensensessessessessessennns 777
Watching Files Programmatically..........c.ccooversersnsensensnsssssesses s ses s e e e 779
Understanding Object Serialization...........c.ccocvvevenenresnsenesssesssssess s ssesessens 781
The Role 0f ODJECE GrAPNScucceererecerr e 782
Configuring Objects for Serialization............ccoceverererrrrnsrrre s 784
Defining Serializable TYPES......ccvererererererererrersesersesersesesserasessesessesessssesssssssesassessssesssssssssassesassesseneres 784
Public Fields, Private Fields, and PUDIIC Properties........cccvvrererrererereerererereressersssessesessesessesessessenenes 785
Choosing a Serialization Formatterocoeeeeeeece e 785
The IFormatter and IRemotingFormatter Interfaces.........cocvvvrrcrecncnnsc e 786
Type Fidelity Among the FOrmatters..........ccovrccnc e s seenes 787
Serializing Objects Using the BinaryFormattercccovevennscnenensesssesesessessenennens 788
Deserializing Objects Using the BinaryFOrmatter.............ccccovreiennnnsescnrsesesessee s 790
Serializing Objects Using the SoapFormatter.........ccccocvvrvrrrvrcnrrser s 790
Serializing Objects Using the XmISerializercccccoeverercscscsssses s 791
Controlling the Generated XML Datacccocerverennnnncnniers s sessssessessssessssesns 792
Serializing Collections of ODJECTS........cccvceeriererrere s 794
Customizing the Soap/Binary Serialization ProCeSS.........ccvvrrrerrerrersessessessesssssessensenns 795
A Deeper Look at Object Serializationcoeevevverererrrere e sese s sae e ssesessesessesassesaesesaesesas 796
Customizing Serialization Using ISeralizable............cccoeerererererenesenesesese e seeeens 797
Customizing Serialization USing AftHDULES.......ceccvrerererrcrere e se e sa e e ees 800
BT 111 112 SRS 801
Chapter 21: Data Access With ADO.NET.......cccccermmmmmmmmssssssssssssssssssssssssssssssssssnns 803
A High-Level Definition of ADO.NETcccoeeerererere e e ssessesssssesnesse e s snssnesnnnns 803
The Three Faces 0f ADO.NET ..ot 804
Understanding ADO.NET Data Providers...........ccoeevvernnerenessessssssssssessessssessssessesensenns 805
The Microsoft-Supplied ADO.NET Data PrOVIAErScceceecrererenererenesesesesssesesesssssesesssssesessssssesessnns 806
Obtaining Third-Party ADO.NET Data PrOVIAEIScccevurererereresenesessnesesessssssesesesssssessssssssesssssssssens 807
Additional ADO.NET NamMESPACESceveerrerseerurrsaererssessesssessssssessssssessssssssssesssssssssssssssses 808

XXXi

CONTENTS

The Types of the System.Data NameSpacecccvverrrerenesserssesesessesesesesessesssssssens 808
The Role of the IDbCONNECLION INTEITACE ... s 809
The Role of the IDbTransaction INErface..........c.covrvrrrerrrrnrrr s 810
The Role of the IDbCOMMAN INTEITACE..........ccoerererirerrirrrrrrr s 810
The Role of the IDbDataParameter and IDataParameter Interfacesc.cocovrrrrnnnnenenesesenenenes 810
The Role of the IDbDataAdapter and IDataAdapter Interfaces...........ccovrrenererreseseresesesesessesesesesens 811
The Role of the IDataReader and IDataRecord INterfacesccovrrrrrrnnnnnnssseseseseseseseens 812

Abstracting Data Providers Using INterfaces.........coovevvrvvrernsrssessensesses s sessessessessenas 813
Increasing Flexibility Using Application Configuration Filesc.cccceerrrererrerenseresereeseresesereseresenes 815

Creating the AutoLot Database..........cccoerererenccc e 816
Installing SQL Server 2016 and SQL Server Management Studioc.ccocvveervenncnecnecnccnesccnnnenn, 816
Creating the INVentory TaDIE ... e 817
Adding Test Records to the Inventory Table.........cc.ccorecrnrcrrr s 819
Authoring the GetPetName() Stored ProCeAUIEccceeeererrccrncre s senes 820
Creating the Customers and Orders TADIESc.oocoeerrcecrerneesre e 820
Creating the Table RelationShipsccccvverrirnnnnnns e e sn e s r s 822

The ADO.NET Data Provider Factory Modelccooeereerenniensnesesessesesesesessessenensens 824
A Complete Data Provider Factory EXample.........cccovveeercnennencnisseseses s sesessssssesessssssesessnns 825
A Potential Drawback with the Data Provider Factory Model............cccorrenenrnencncnnesesesenesesenenens 828
The <connectionStrings> EIBMENT............ococerrcccre s 829

Understanding the Connected Layer of ADO.NETcccooeverrrnnesnessesses s sesssssessenenns 830
Working with CONNECtioN ODJECLS........ccevererrererrerereresereresersesessesessesessesassessssesassessessssessssessesesssenaes 831
Working with ConnectionStringBuilder ODJECES........ccoeverererrererererre s s e e s e saesesaesesaes 833
Working with Command ODJECEScceverererrererrere s s e se e sae e sae e sae e sae e s e sas e saesenans 834

Working with Data Readers..........cccvcrvrieriersnsissesssnssssss s sss s sns s s sennes 835
Obtaining Multiple Result Sets Using a Data Reader...........cccoovvrrvrernnnnnennncnssene s 837

Working with Create, Update, and Delete QUeries.........ccccuvrvrvrversercersesces s 837
Adding the CONSIIUCIOScccoueeceerirecserisee s s e nesp e nnnrans 838
Opening and Closing the CONNECHION............ccceerrirrencrerree e eens 838
Create the Car MOGEL...........cccccr e e 839

xxxii

CONTENTS

Adding the Selection MELNOUS.........cccvererierererrrere e rae s e ras e rae e sae e aesasaesassesasesasenaes 839
INSEITING @ NBW Gccvecerereecreeereeerresessereseraesersesesassessesassesassesassesaesessesasaesassesassesasssssssansesansesseneres 840
Adding the Deletion LOGIC.......ccccvvrrrrirrirrinrirris s ses s sss s s ssssas e s sssssssssssssassessasssssssssssassassssnens 842
Adding the Update LOGIC........ccuvrvirrerrirririensirris st sss s sssses s s sa s e sassassssssssssssssesssssssssssassasssssnns 842
Working with Parameterized Command ODJECTSccevvveverrererrererere e rererssessesessesessesessessssessesenas 843
Executing @ STOred PrOCEAUIEcceeereriererrerrererreseressessesesersssessesessesesssssssessssessssesssssssssassessssessenenes 845
Creating a Console-Based Client Application ..o 846
Understanding Database TranSactions..........ccccverereresesresssesesssssessssssssesssssessssssssessenns 847
Key Members of an ADO.NET Transaction ObJECTcveceerresenennnnesesesnssesessssse s sesssseenens 848
Adding a CreditRisks Table to the AutoLot Database.............cocoererererererererereresesesesereseseseseseseseseseseseenes 849
Adding a Transaction Method t0 INVENTOrYDAL..........cccoveeeverneserrrne s ssssssssesessnns 849
Testing Your Database TranSacCtioncccceeeeerernnenesensssssesssssssesesssss e sssssessssssssssessssssssssssssssssssssnns 851
Executing Bulk Copies With ADO.NETccoeerernirenncrs s snseenas 852
Exploring the SQIBUIKCOPY ClASS.......ccerererererrerrerersnsersesensessssessssessesessesessessssessssessesessssssssssssessssesssnenes 852
Creating @ Custom Data REAENcceeeviererrereerere s rereres e rse s e sse e ssesas e saesesassesassassesassesassenes 853
EXECULING the BUIK COPY...ceereeereeererrererereresersssersesesassessessssessssessesessesesssssssessssessssessssssssassesassesssnenes 855
TESHING the BUIK COPYcoveeeereererereerereesersesessessssessesessssessessssessssessesssssssssessssessssesssssssessssessssesssnsssssnaes 856
1111 11T SRS 856
Chapter 22: Introducing Entity Framework 6cccevnnsemnnnssssssssssssssssssssssnnns 857
Understanding the Role of the Entity Frameworkccccoeeeveeecesecscsceecee s 858
The Role Of ENtItIES.......covvniniririinirissir s 858
The Building Blocks of the Entity FramewWOork............cooerrrencnrrescrireseesesess e 859
Code First from an Existing Databasec.ccerererernsersesnssesssssessssessesesessssessesessens 864
Generating the MOGEI ..o e s s ne e sn e e e 864
What Did That DO?covoviecerrrecsesiree e sr s s s e nn s nnnnns 868
Changing the Default MapPinNgScccuoeceeererrsseserrsssssesesssesesesssssesessssssssessssssssssssssssssssssssssssssssssssssnes 870
Adding Features to the Generated Model CIaSSES.........coeeurrererrereererererereneressessesessesesesessessssessesesses 871
Using the Model Classes in COdEcocuereerrrerenesessseneses s sse s snssessessssens 872
INSEIING DALAceceececece e e a e e e e e e e e e e e s 872
T L= 1 T J 31T 0 (o 3P 874

xxxiii

CONTENTS

The Role of Navigation Properties ... s sss e e sesssssessssssssssssssssssssens 877
Deleting DALA.......ccooiiieerere e e a e a e e e p e e s 879
Updating @ RECOIMcoeiiiiiiiercre e s sa e sa e s e e e e e b s bt s a et e e e nn e sa e nn e e e nn e s 881
Handling Database Changesc.ccucvrrrernmrsensensesses s s s s sessesssssessnssnssessnssnssssnnnns 882
Creating the AutoLot Data ACCESS LAYETcccevereererrerrerrerres e see s s sessasssssessesssssannnns 882
Adding the MOUEl CIASSESceureeererrrreererssseesessssssesessssssssessssssssessans 883
Update the DDCONTEXL.........cccorriecrerreccre e ss s n s s s nnnpn e 884
Update the APP.CONTIG File......oieeeeeeeeeerereee e na s enes 884
Initializing the DAtADASEcoveeererrreererrrse s ae s na s e e 885
Test-Driving AULOLOTDAL...........coce e sne s sne e s n e s n s 887
Entity Framework Migrationscccvcversrsnsnssses s sns s snnnns 887
Create the Initial Migration............coo e 888
Update the MOTEL ... e e e e 889
Create the Final Migration ... 891
Seeding the DAADASE. ... 893
Adding Repositories for Code REUSE..........cceovverrererserresisessssesesessessssessesessessesessessssesnes 893
Adding the IREPO INTEITACEeeeeeerrreerirrree s ne s p s nnnr s 893
Adding the BASEREPOcccceerrrreerirrrseeresssseesessssssesessssssssesssans 894
Test-Driving AULOLOTDAL TAKE 2cccceeerverrererreree s sse s see s sse e s sse s e ssesnsssessnssneas 897
Printing INVENTOry RECOIUSc.cvueiieiererie et ss e e s sa e sa e sa e s r e sa e st a e st r e sa e a e sn e sn e e s 897
Adding INVENTOrY RECOIUS......ccccvieririrrirrer sttt se st sa e et sr s sr et se st se e e e sa e n e e s 897
EdIiting RECOIUS.....veivicieieecterie e sa e s a e e sa e e e e e e b e e e e e a e e e e e e e e e nn e e e s 898
DEletiNg RECOIUScveeueeerierierie e s a e s a e a e sa e s e e e e s e e e e e e e e e e e e sa e e e nn e e e s 898
CONCUITEINCYveveeeeeecsersessessessessessessessessessessessessessessssssssessessesssssessessessssssssesssssensessansans 898
11 (=T (oL (0 900
The IDbCommandIinterceptor INTErfaCe..........ccovveiererriesese s 900
Adding Interception t0 AUTOLOTDAL..........cvueeeerereeneresrss s sss s sssss s e sssssssssssssns 900
Registering the INTErCePOr. ...t nes 901
Adding the DatabaseLogger INTErCEPIOr........cccvieccrerrrr e 902

XXXiv

CONTENTS

ObjectMaterialized and SavingChanges EVENtsccoccevvernnnennsesessssessssessesensenns 902
Accessing the ObJECt CONTEXL.........oveeceerrecrcrrre e 903
ODJECIMALErIAlIZEA.ceeeeceeeeeer e a e 903
SAVINGONANGES ... eeueererererte e a st b e e e st s e b e e a e e R et s ae e e e e e et eae e eae e e aenenanes 903

Splitting the Models from the Data ACCESS LAYErccccvvrverrerrerserserserser s sessenens 905

Deploying t0 SAL Server EXPress........ccvirrressessesssssessessnsnns 905
Deploying to SQL Server Express Using Migrationscccccevvrnnnnnnennnennsesssese s sesesssenns 905
Creating @ Migration SCIipL.........ccoiirirr e e r e r e 906

SUMMEAIY ...t a s ae e r e e s a e e ae e s nnnnnnnas 906

Chapter 23: Introducing Windows Communication Foundationccccuseenee 907

Choosing a Distributed AP ..o s 907

The RoIE Of WCF ... s 908
An Overview 0f WCF FEAtUIES ... sssssssssns 908
An Overview of Service-Oriented ArChiteCUre ... 909
Tenet 1: Boundaries Are EXPIICIL........cccceviererrererrerereresereseseressessesersesessesassesasessssessesssssssssesssnessssenaes 909
Tenet 2: Services Are AUTONOMOUSc.cvecnsnsrisinsssssissss s 909
Tenet 3: Services Communicate via Contract, Not Implementation..........cccccoevvevvcevrcevnccverereee, 910
Tenet 4: Service Compatibility IS Based 0N POICYccceeeverrererrerererererererersssessesessesessesessessssessesesaes 910
WCF: The BOIOM LiNE......cciuierininirisisissssnisissssssssessssss s sssssssssssssns 910

Investigating the Core WCF ASSEMDIIEScoeeeeerereereerre e sse e seesss e snssne e s s snnnnns 910

The Visual Studio WCF Project TeMPIAtescccceevverrrerenmssesessesesessesssesesessessssnnnens 911
The WCF Service Web Site Project Template ..o 912

The Basic Composition of @a WCF Applicationccccevververinriessessessesseessesseessesssesaens 913

The ABCS OF WCF ..ot sn s 914
Understanding WCF CONtracts ... sns s e s e sssens 915
Understanding WCF BiNGINGSccceeieriienniernscre s ses e sessessssessssessssessssssssssssessssessssesns 916
HTTP-Based BiNQINGScccevermirinireriresis e sss s sss e ses s s e ssssessssesssssssssssssssssessssenns 916
TCP-Based BinNUINGSccceeurererrerreriresisesisessssesss e s sessessssessssessesessssessessssessssssssssssesssssssssessenesssssnes 917
MSMQ-Based BiNAINGS.......cccouerirereniiinirerissese s sss s sss e e sesssssssessssessesessesssssssssessssesssnenns 918
Understanding WCF AQUIESSES........courueerererreereresssesesesasssesesss e sss s e sssssssssssssssssssessssssssssssssnsssnns 918

XXXV

CONTENTS

BUIIAING @ WCF SEIVICEcccvcereeirereresesessessess e sse s s e s ssssssssssssssssssssssssssssnssnes 919
The [ServiceContract] AHMDULEccoceeerecreeser e 921
The [OperationContract] ARMDULE.........ccovreeeerreesr e 921
Service Types As Operational CONIaCESccceverriernrernrcre e s se e sasaens 922

HoSting the WCF SEIVICEccvververreriererersir st ses s e e e e s e snssessnssassnssnsnns 922
Establishing the ABCs Within an App.config Fileccccverrierrrererererererereresersesessesessesessesessessssenes 923
Coding Against the SErviCEHOST TYPEccveeverereererererr et rre e se e s e sae e sae e s e saesas e saesenes 924
SPECIfYiNg Base AUQUIESSESccceerererrerrerereerersereresasessesersesessessssessssessssesssssssessssessssesssessssssssssssssasaens 925
Details 0f the SErVICEHOST TYPE ...c.cvveereerercrer st rerte st re s s s ae e s e sae e s e e s e sae e sae e sae e saesassesaenees 926
Details of the <system.serviceModel> EIEMENL..........ccccvcevrierrrerenrerre e rerserse e sessesessesessessssenes 928
Enabling Metadata EXCRANGEccceeererererereree e sereesessesesessssessesessesessesassessssessssesssssssssessesassesssnenes 929

Building the WCF Client Applicationcccvercrsersnses s sns e sesens 932
Generating Proxy Code USiNg SVCULILEXEcccereverereieneneriners e ses s e ssssessssesns 932
Generating Proxy Code Using Visual STUTI0..........coeeererercicrerereesesersecse e 933
Configuring @ TCP-Based BiNding..........cccucerriernnrennssnssners s se e sesssssssessssessssesns 935

Simplifying Configuration SEttings..........c.cceovierennieresnnenns s 937
Leveraging Default ENAPOINTS..........coveoeeererrenencnessesesissse s se s sessssssssessssssssesssssssssnnns 937
Exposing a Single WCF Service Using Multiple Bindings...........ccccerrrnenenennsenesenesesesesenesesesessssesenens 938
Changing Settings for @ WCF Binding........cccoceeerrrrenenernenesesesesesesesssssesessssssesessssssssessssssssesssssssssens 940
Leveraging the Default MEX Behavior Configuration............coooeeeennnnencsnnesesessesssesese e 941
Refreshing the Client Proxy and Selecting the Bindingcccccerreiencnnnenesensesesessese s 942

Using the WCF Service Library Project Templateccccocvvrrerrvnnssssenses s sessessennnns 944
Building @ Simple Math SEIVICEccverrerrrererere st res e sae e s e e saesesaesesassasaesassesasnenes 944
Testing the WCF Service With WCTTEStCIIENT.BXEevvueeerererererrerre v rererere e see e e saesessesassessesesans 944
Altering Configuration Files Using SVCCONfIQEAITON.EXE........ccvueeereerereererererereerereesessesessesessesaesessesesas 945

Hosting the WCF Service Within @ Windows Service.........c.ccevevrrsensessessenssssessesssnsenns 947
Specifying the ABCS iN COUE.........c.ccceererercererere e 948
ENADIING MEX.......o ettt s bbb e e e e p e s 950
Creating @ Windows Service INSTaller ... s 950
Installing the WindOWS SEIVICE.........cccuiiiernierrrcre e e s sa s 952

XXXVi

CONTENTS

Invoking a Service Asynchronously from the Client ... 953
Designing WCF Data Contracts.........ccccvvrverrrsnsensessessesses s sessessessesssssesssssssssssassasssssnnns 956
Using the Web-centric WCF Service Project TEmpIate..........cccoveeveverererenerseressersesersesessesessesessessssees 957
Update NuGet Packages and Install AutoMapper and EFcoeovevrererrerenrere s reseresseseeenns 959
Implementing the Service CONEFaCtccvvvererrerere e rae e ae e s e sas e e e e s 959
The Role 0f the *.SVC File.......cccvirninics s 960
Examining the WeD.CONTig File.......ccccverriererrererere e reresesersssersesessesessesessessssessssesssssssssessesassessssenes 961
TESHING ThE SEIVICEecveereeererer st e s s ae s e s s s e e e e s s e s sa e e sae e saenenae e saesae e nae e naen 962
BT 111 112 SRS 962

Part ViI: Windows Presentation Foundation...........ccccerremensnrenensnnens 963

Chapter 24: Introducing Windows Presentation Foundation and XAML............. 965
The Motivation Behind WPF...........ccoconmmmnss s 965
UNITYING DIVEISE APIS.......coveererereerereenerseserersssersssessssessssessessssessssessesessesssssssssessssessssesssssssssassesassessenerns 966
Providing a Separation of COncerns via XAML..........cccceevvereriererrerenersesesesesessssessesessssesssssssessssessenenes 966
Providing an Optimized Rendering MOGEIcccoeeeverercereriereerererersesersesesessssessesessssessssessessssessesenes 967
Simplifying Complex Ul Programmingcouvmmnnmissssssssssssssssssssssssssssssssssssssessas 967
Investigating the WPF ASSEMDIIES.........cccoeeeeerecesccecre et sne e 968
The Role of the APPlICAtION ClASScccceverrerrerrirrer sttt ses e sas e sa s e sas e s e s e sa e e e saesaesaenes 970
Constructing an Application ClaSSccccvririrrcnnssnerre et sas e s s 970
Enumerating the Windows COlIECLION.........cccccceiererrccrc e 971
The Role of the WINdOW Class ... sssssssssssssssssssssenes 971
Understanding the Syntax of WPF XAML..........ccorirnnnennserse s e 976
INtrodUCING KaAXAML.....cvveeeeeiscccr e s e nns 976
XAML XML Namespaces and XAML “KEYWOITAS”.........ccveererrrenermsrsesssessssssssessssssssesessssssssssssssssssssens 977
Controlling Class and Member Variable ViSiDility..........cccooeoeerreiennnsnescrrsesesessesesesese s 980
XAML Elements, XAML Attributes, and Type CONVEIES.........cccccceerrrerereresenssesessesesesssssesesssssesesenns 980
Understanding XAML Property-Element SYNtaXxc.cooooeeeernenencnnnnssesssesesesessssssesessssesesessssseens 981
Understanding XAML Attached Properties.........cocuveeererneseresesesssesessessesessssssssessssssssessssssssesssssssssens 982
Understanding XAML Markup EXTENSIONS.......ccccovreerererenenesesesesesesesssssesessssssesesssssssessssssssesssssssssnns 983

XXXVii

CONTENTS

Building WPF Applications Using Visual Studioccccueerenmriennscsessssennsesesessesesennes 985
The WPF Project TEMPIALES ..o sesees 985
The Toolbox and XAML DeSigner/EITOrcoveeerererreiesesesssesesesssesesessssssssessssssssessssssssesessssssssssens 986
Setting Properties Using the Properties WindOW...........cccoveeeecrnnsencnnnesesesssse s sesessssens 988
Handling Events Using the Properties WindOW...........cccoveeeernenenennssesesssssesesessessesessesssesesssseeens 990
Handling Events in the XAML EAITOF ... 990
The Document OUtling WINAOW...........cococvrriririnirninsitree s 991
Enable or Disable the XAML DEDUGQETcceeeeirereerirrccreris e 992
Examining the APP.XamI Filecooovieeeeeercseeeesi e 993
Mapping the Window XAML Markup 10 C# COTE ... 994
THE ROIE Of BANIL ... 996
Solving the Mystery of Main()........cccceceerrrenererneresirse s s ses s 996
Interacting with Application-Level Data...........cccovreeerrnencsirreeserse e seens 997
Handling the Closing of @ WindOW ODJECT..........covveeerirnccrrs e 998
INtercepting MOUSE EVENTSc.ccceereicecrireescsis e snnnns 999
Intercepting Keyboard EVENTS...........cccoceerirenenerneesesesee e sss s sessssssnns 1000

Exploring the WPF Documentationccvvrvenvennensensensensesses s e sessessessessassessssses 1000

SUMMANY ...ttt s s se s r s e r s sa e n e e s e s r e sn e snsn e e e nennesnenn e e e nnennenrnnnnnnn 1001

Chapter 25: WPF Controls, Layouts, Events, and Data Binding...........cccnriisnnes 1003

A Survey of the Core WPF CONtIOIScccceeeeeenerrerere e e e ssessessesssssesnssss s ssssnssnnnas 1003
The WPF INK CONTFOIS.......covriririnirinisisisisisisisisisisisese s es 1004
The WPF Document CONtIOIS ... sssssssees 1004
WPF Common Dialog BOXES.......cccceuierrererenernesessessssessesessssesesssessssessssessssesssssssssssssssssessessssssassessssens 1004
The Details Are in the Documentation ... —————— 1005

A Brief Review of the Visual Studio WPF DeSIgnerc.ccccucerrnereressesensesesessessnsensens 1005
Working with WPF Controls Using Visual STUdio...........c.coorrnnnnnnnnnnnreseseseseseseseseseseseseseeens 1005
Working with the Document QUting Editor.........c..oveeeeeeceee s 1006

Controlling Content Layout Using Panelscccocevvrerrernnnnsnesses s e sessenns 1006
Positioning Content Within Canvas PanEISccceevererrerererenseresseresesesesessssessssessesessessssessssees 1008
Positioning Content Within WrapPanel Panels............ccceerrererererseresseresesesesessssessssessesessessssessssees 1009
Positioning Content Within StackPanel Panels............ccoevvererererreresserssesesesessssessssessesessessssessssenes 1011

XxXxviii

CONTENTS

Positioning Content Within Grid PAnEISccocevrvererererrs s sess e sessessssessssessssessesessessssenes 1012
Grids With GrHASPITEr TYPES ..evvvevererererrerere st rss e sae s ssesas e sas e ssesessesassesassesassesaesesaesassesassenes 1014
Positioning Content Within DockPanel Pan€lScccvvvverererenieresseresesesesessssessesessesessessssessssenes 1015
Enabling Scrolling for PAnel TYPESccverereerererererserersesersesessesssessssesssssssessssessssesssssssssssssssssessssenes 1016
Configuring Panels Using the Visual Studio DESIGNErS.........cccvveverrererrererereresersssessesessesessesesessesees 1017
Building a Window’s Frame Using Nested Panels..........c.ccocverrrercrcercessessessescenennns 1020
Building the Menu SYSIBM.........c.oe e 1021
BUilding MenUS VISUAIIY........cccoueueeeereeecririnecsesisee e se s se s nnas 1023
BUIlAING the TOOIDAN ...t as 1023
BUilding the STAtUS Bar.........ccoeceiriiecccrinecsess e 1024
FiN@lizing the Ul DESIONccoeuiecrerieeeriris e nnas 1024
Implementing the MouseEnter/MouseLeave Event Handlers.............ccoorieeennnescscnenscescneseecens 1025
Implementing the SPell-ChecKing LOGIC.........ccovurererererreseririsesesessseesesss e ssseenns 1025
Understanding WPF COMMANGSccovverenmnesnsesenesessssessesessessssesessssesssssssessssesses 1026
The Intrinsic CommMANd ODJECES......cccvvierererrrrererrrre e nrsra s 1026
Connecting Commands to the Command Property.........ccccoeveeseserrnesesesssssesessssssssessssssssessssssssennns 1027
Connecting Commands to Arbitrary ACLIONSccccceeeerniesenrnnesesersee e eeens 1028
Working with the Open and Save COMMANGScccocvrrrneresereresesesessssesese s sesessssssssessssssenes 1029
Understanding Routed EVENtS ... e seesaeas 1031
The Role of Routed BUbDBIING EVENTS........cccciviieiiriirrrtrsres s sss e sss e s e sasses s sssssssssssssenns 1032
Continuing or Halting BUDDIING.........ccceocrrrrerre s s e sse e sesse s s e s e saesesaesassesassenes 1033
The Role of Routed TUNNEIING EVENESccccvvieicieincrrrr e ss s se e sns s e e e nns 1033
A Deeper Look at WPF APIS and CONtrolS.........ccceeeeeeeeeeneessessessssesssssss s ssssessesssssnnnns 1035
Working with the TADCONTIOL.........cccoeoeieeeee e 1035
BUilding the INK API TaD.........cceeeirerercressnesesse s sss s e s sss e sseses e snssessessssesssssanens 1036
DesSigning the TOOIDAccccovrrererirrneserirree s e s e s e e e nnes 1036
The RadioBULEON CONTIOL.........coceeeeeccrerirerereser e es 1037
Add the Save, Load, and Delete BULLONS...........ccccvrerererecrertr ettt ses e sae e sse e saesessesesaens 1037
Add the INKCANVAS CONTIOLc.coceeeerercrircrerereres e senees 1038
Preview the WINUOW ... 1038
Handling Events for the INK APITaD ..o sessssseens 1038

x1

CONTENTS

Add Controls t0 the TOOIDOX ... 1039
The INKCANVAS CONTIOL........cureeiririsiisssrisissss s 1039
The ComMDOBOX CONTIOLcuriciririsiissisisss bbb 1041
Saving, Loading, and Clearing INKCanvas Data.............ccccvvrererrererereneniesessersssensesessssessesessesessessssenes 1043
Introducing the WPF Data-Binding Model ... 1044
Building the Data Binding Tab...........oooe e 1044
Establishing Data BiNGiNgS.........ccoceururerererreeserseesese s sesss s sessssssnns 1045
The DataContext PrOPEIY........cccoceceererercrerircerese e 1045
Formatting the Bound Dataccoeeicrirneicrreeecre e 1046
Data Conversion Using IVAIUBCONVEIEN ...t 1047
Establishing Data Bindings in COME ..o 1048
Building the DataGrid TaD ..o 1049
Understanding the Role of Dependency Properties..........cccuocerseresesesensessesessessnsennes 1050
Examining an Existing Dependency Propertyccocvveveseresrssssesssssssssssssssssssesssssssssssssssssssssssssssnnns 1051
Important Notes Regarding CLR Property Wrappers..........cococoererenerenenesesesenesesesesssesesesesesessseeesesenens 1054
Building a Custom Dependency Propertyccccvvvrrerrerressessessessessessessessessessasssssenses 1054
Adding a Data Validation ROULINE ..o se s sn e e 1057
Responding to the Property Change...........ccosssssss s 1058
1111] 11T SRS 1059
Chapter 26: WPF Graphics Rendering ServiCes........cccsrumssssssrsssssnssssssssnsssssssnns 1061
Understanding WPF’s Graphical Rendering Servicescccooerevereseseesessessessensenns 1061
WPF Graphical Rendering OptionS..........cocoiernerninnncne s ses e ssssessssessssessessssens 1062
Rendering Graphical Data USing SNapes..........cccceveerrneresnnsesssssessssessesessessssesssssnsens 1063
Adding Rectangles, Ellipses, and Lines t0 @ CanVas..........ccccvvrrerererrrrnsssesessssssessssssssssesssssssssssssssenes 1064
Removing Rectangles, Ellipses, and Lines from @ CanVvas............covrerererrsesesessssssssessssssssessssssssennns 1067
Working with Polylines and POIYGONS...........cccccerrnenenenrnesesessssssssessssssesessssssssessssssssssssssssssssssssssaes 1068
WOrKiNG With Pathis.........oeceeeeirinescsrisecsinssss s ss s sssss s e sssssssssssssssssssssssssenes 1068
WPF Brushes and Pens ..o 1071
Configuring Brushes Using Visual STUI0...........ccovreverrerererenerersnreressessssessssessessssessssessesssssssssessssenes 1072
Configuring BruShes iN COUEccveverererererereresersssersesersesessesassessssesssssssssassessssessssessssessesassesassenes 1075
00 10 T T N =T 3 1076

CONTENTS

Applying Graphical Transformations..........ccccecevererrrenensse e 1076
A First Look at TranSformations..........cocovverereririnmninenisssese s sesesesenes 1077
Transforming Your Canvas Data............cocovrrerrinininnnissssssesese s 1078

Working with the Visual Studio Transform Editorcccvvvrvrvrvnvnsncesres s, 1080
Building the INItial LAYOUL.........cccerererrererereerereresersssessesessesessesassesassessssssssssssessssessessssensssesassessssenes 1080
Applying Transformations at DESIgN TIMEccccvrrerererererrerereresereesersesessesessessssessssessesessssassessssens 1081
Transforming the Canvas in COUE.........ccvererereriererrerrerereserserereresserassessesessesessssassesassessesessssassessssens 1083

Rendering Graphical Data Using Drawings and Geometriesccccocvereersersersennnnn 1083
Building a DrawingBrush USing GEOMELIEs.......ccccccevverecerenncrinsers e se s e s sens 1084
Painting with the DrawingBrUSh...........ccociirrinne e sr s 1085
Containing Drawing Types in @ DrawinglMageccccccvvrrrnnenniesssese s sesssssssessssenns 1086

Working with VEctor IMages.........ccocvererriereninessse e s s sssse s 1086
Converting a Sample Vector Graphic File into XAML ... sesesssseeens 1086
Importing the Graphical Data into @ WPF Project............cccceerecescnernccsisseesesesse s 1088
Interacting With the SigN ... 1088

Rendering Graphical Data Using the Visual Layercccvcrvrvervrversennessessensessensenns 1089
The Visual Base Class and Derived Child CIASSESc.oumennrmrrmnnnsssessssssssssssssssssssssssns 1089
A First Look at Using the DrawingVisual ClIasSccceeeeerereererierersersssersssessesessessssessssessesessssessessssens 1089
Rendering Visual Data to a Custom Layout Manager...........ccocveeverrererrereeseresesessssessesessesessesessessssenes 1091
Responding to Hit-TeSt OPErationsS........cccccvererereriersererseseresessesessersssesssssssesessessssessssessessssessssessssenes 1093

1] 111 S 1094

Chapter 27: WPF Resources, Animations, Styles, and Templates........cccceurrrns 1095

Understanding the WPF Resource System..........ooeeeeenercscsssee s snssnnns 1095
Working With Bina@ry RESOUICES.........ccoucererirrerererisiese e e e ssssessssessesessssssssssssessssesssssssssssssssssens 1095

Working with Object (Logical) RESOUICES..........ccecverrerrrierenseresessesesse s ssesessens 1100
The Role of the RESOUICES PrOPEITYcccoceerecrcrernescre s s 1100
Defining WindoW-Wide RESOUICES........ccceururueererereeseresseesesesssesesessssssesesssssssesssssssesssssssssssssssssnns 1100
The {StaticResource} Markup EXIENSION.........cccocvuiriercrrnicscrrrese e s 1103
The {DynamicResource} Markup EXIENSION.........ovceeeerresenrneseser e 1104
ApPliCAtioN-LEVEl RESOUICESc.coeeerereecreririeeesesessese s s sesssss s s sessasnns 1105

xli

CONTENTS

Defining Merged Resource DiCHONANIES ... s s ss s s e e eas 1106
Defining a ReSource-0nly ASSEMDIY.........cccvererrererrererrerserersesesessssersssersssssssssssessssessssessesssssssssesseseres 1107
Understanding WPF’s Animation ServiCes........c.cooeeerereressesssssssssssssssssssssessssssssennes 1108
The Role of the Animation Class TYPEScocecrererrerererrnesesirse e s 1109
The To, From, and BY PrOPEILIEScceciirircrne s st se s ssssessssessssassssssaens 1110
The Role of the Timeling Base Class...........c.covvrrrnnnnnnnnssssssssssssssssssssssssessseeses 1110
Authoring an Animation in CH# COAE ..ot 1110
Controlling the Pace of an ANIMALIONccccerieierrrrecr e 1112
Reversing and Looping an AniMationccceereeerereneiencrinese s eens 1112
Authoring Animations in XAML...........cceouierrennsesnsesessssessesessesssssssessssessssssssssssssssssssens 1113
The Role Of STOrYDOAIUSccceurrrecrerireererrree e s s e re s 1114
The Role Of EVENT THOOEIS ...ccceureeeererrsseesesssssesessssssssesessssesssessssssssesssssssssssssssssssssssssssnsssssessssssssssaes 1115
Animation Using DiSCrete KeY FIamMES.........couceverrinesenrrssesesessssssssessssssesesssssssssssssssssssssssssssssssssssaes 1115
Understanding the Role of WPF StYIES.......cccceverernrnnr s ses e e e e 1116
Defining and APPIYING @ STYIE......ccveverererere et rrs e rse s se s e s e e ae e s se e saesa s e sa e e saesesaesasaesaesees 1117
VLT o [T T TS 47Tt 4o 1117
The Effect of TargetType 0N STYIES......cvcvevrerrerer e res e e sas e ssesessesessesassesasesassesassasssnanaens 1118
Subclassing EXISHING SIYIESc.ccverrerrrertrrere et s s s se e sae e se e sas e sae e sas e saesesaesassesassenes 1119
Defining StYlES With THOGEISvvererererereererrererereseraesersesessesessesassesassesssssssssassessssessssessesessessssessssenes 1120
Defining Styles With MUIEPIE THGQEIS ...covrirererererereererererseresesesersssessesessesessessssessssessesessesessessssenes 1121
L 41T 1= T S 4T 1122
Assigning Styles Programmaticallyccccveevrierniererrssereseseseseressessesessesessesassesassessssessssasssssssens 1122
Logical Trees, Visual Trees, and Default Templatesccooeeeeerececerecssessee e 1124
Programmatically Inspecting @ LOgICal TrEE.........cceceererurercrerrnescreseseesese e ssseeens 1124
Programmatically InSpecting @ ViSUal TrEE........c..ceeerererrencriree e 1126
Programmatically Inspecting a Control’s Default Template..........ccooeeerreeennnecesrreeserereeeens 1127
Building a Control Template with the Trigger Frameworkcccoovcveevierenscsesnnnens 1130
TemPIAteS @S RESOUICES........ccceurerererreerseersesessesessessssessssesssses s ssssesssessssessssessssssssssssessssssssnsssssnens 1131
Incorporating Visual Cues USING THGGEISccceerrrrereseresrmesersssssssesessssssesssssssssssssssssssssssssssssssssssssanns 1132
The Role of the {TemplateBinding} Markup EXtENSION.........ccccoveverrnesescnsse s 1133

xlii

CONTENTS

The Role of CONtENTPIESENTEN ..o s 1134
Incorporating Templates iNt0 STYIEScoveevereriererrerr e sa e r e e sae e sae e ssesae e es 1134
SUMMANY ...ttt e r e e s r e r e e e e e r e e e sn e sn e e e s e nn e s e sn e s e nnennennnnnannn 1135
Chapter 28: WPF Notifications, Validations, Commands, and MVVM............... 1137
Introducing Model-View-VieWMOdElccoeeeeererecece e 1137
THE MOGEL ... s 1137
THEVIBW .. 1138
THE VIEW MOUEI ... 1138
Anemic Models or Anemic View MOEIS...........cocorrrrninnnnnnsnsssssssssesss s 1138
The WPF Binding Notification System........c.ccoceviiesnicnnssessess e 1139
Observable Models and COlIECHIONS.........c.cocrerererererererererereresesese e enens 1139
Adding Bindings and Datacccerrrerererrnnsesesessssesessssssesessssssssessaes 1140
Programmatically Changing the VEhicle Data...........cccovverererrniesenensnesesesssssesessssssssesssssssesesssssennns 1141
ODSEIVADIE MOUEIScceeceeeeee e 1142
ODbSErvable COIBCHONS ..o 1144
Wrapping Up Notifications and ObServablesccovvreererrierre et senaens 1147
WPF Validations.........coemiimnnns s 1148
Updating the Sample for the Validation EXamples..........ccccvvevrrerniernnerssensresesessessssessesessssessessssenes 1148
The Validation Class........ccu i 1148
Validation OPLIONS.......cceeeverererererrr e sere s ss e s e e ra s e sas e sa e e sae e saesesaesasaesa e e sae e sassanaeanaens 1149
Leverage Data Annotations With WPF ... s e ss e e e eas 1159
Customizing the ErrorTEMPIALEccceceverererrerere st s e sa e s saenesaesasnesassees 1161
Wrapping up ValidationS ..o s se s s sa e assa s e sa s sassassassassnesnns 1163
Creating Custom COMMANGS.........ccccerierreerierrrrier s ses e s se e sn e s snesaesnesae s 1164
Implementing the ICoMMAN INTEITACE ..o 1164
Adding the ChangeColorCOMmMEAN..........c.coreerererecrcre e 1164
Creating the CommandBaSE CIASScccorueererrrereririrre e 1167
Adding the AddCarComMmAaNd ClaSSc.ceureerererriesererieesesessse e se s sessssess 1167
RelayCOMMEANGS........cccouieeeirieirccreris et e s ne s e s ne e e pn e e s 1169
Wrapping Up COMMANGScccoieriicriecrenere s e sas e s s s e st sas e sas e ssssesassassssssnens 1171

xliii

CONTENTS

Migrate Code and Data to @ View Modelccccoveerrnrennienssnnesse e 1171
Moving the MainWindow.Xaml.CS COUERccceerrrererererrrercrerree et 1171
Updating the MainWindow Code and MarkUupcccoeeeecreressenesesssssssesssssssessssssssessssssssesesssssssnns 1172
Updating the CONtrol MArkUp.........coeeeeererenensseseseesesesssssesessss e sssssesesssssssesssssssssssssssssssssssssnns 1172
Wrapping Up VIEW MOTEIS ..o sssssssssssssssnss 1173

Updating AUtOLOIDAL fOr MVVMcooevererrrererree e ses e ses s s sessssssssassassassssses 1173
Updating the ENtityBase ClaSS.......ccccvrrereerereerersererersesersesessessssessssessssessssssssssssessssessesssssnssssssssesassenes 1174
Updating the Inventory Partial Classccccecveererrererrereserenesessssersssesssssssessssessssessssessessssessssessssenes 1174
Adding PropertyChanged.Fody to the Models Projectccocvvevrverrrerenneserereseressessssesaesessesenaens 1174
Adding Entity Framework and Connection Strings to the WPF Project...........ccvevvevvrererevesenerenens 1174
Updating the MainWindoW XANLcccoeevereriererrersesersesessesessersssessssesssssssessssessssesssssssssssssssssessssenes 1175
Updating the VIEW MOTEL.........cccevererrerereree s resessssersesersesessesassessssessssssssssssessssessessssssssssnsssesassenes 1175
Updating the AddCarCOMMANQ...........cecererereereriererrerssrersesersesessesssersssesssssssesessessssessesessssssssssssesassenes 1175
Using ObjectMaterialized with Entity FrameworK.........cccccveerererrernrereseresesesessessssessesessesessessssenes 1175

SUMMANY ...ttt sr s s e sr s e s e s sn s r e e s e e r e nn s e s nn s e e nennesnennannennnnnnnnnnnnnnns 1176

1 QT TH T o | | Y A —— I ¥ |

Chapter 29: Introducing ASP.NET MVC...........cocccnmssanmmssansssssnsssssnsssssnsssssnnssssnnss 1179
Introducing the MVC Pattern ... ses s e e e sss e s 1179
THE MOGEL.....ceeeeceeeeeeaeeeeses s sss s s s s s s 1179
=N 1180
THE CONIOIIET ...t e 1180
WHRY MVG?......coeeeeeeeerensesseeeses s s sss s s s s s e p s 1180
ENEEr ASPINET MVG.......cocececereaceeeeesessessessessssssessessessesssssssessessessessssssssssessessasssssssssssssessessssssnsssnes 1180
The ASP.NET MVC Application Templatecccocverrrnernssssesses s sesseneas 1181
The New ProjeCt WIizard...........ccveeeiereriennesisesisse s ses s e sss e ssssessesesssssssessssesssssssssnssessssens 1181
PrOJECE OVEIVIBWc.eeereceeccie ettt s e s d et a e e e e nn e e 1183
ProjeCt ROOL FlBS.......couiecircriccc ettt p s s e e n s 1184
GIOD@L.ASAX.CS....cuerererireiesiisesese e 1185
The MOdEIS FOIAEE ... 1185
The Controllers FOIUEN ... 1185

xliv

CONTENTS

THE VIEWS FOIURN ...ttt 1185
THE ASP.NET FOIUEISceeueeeeceresrenseeessssessessessssssssssessessesssssssssessesssssssssssssesssssssssssssssessesssssssssseans 1186
B2 o] IS L 0] o T 1186
The CONtENt FOIUEN ... 1188
The FONES FOIAR ... s 1189
BT] 0 30 0] [- 1189
Update Project NUGEt PACKAGESccecereerereererererersssersesersesessessssessssessssssssssssessssesssssssssssssssssessssenes 1190
Update the Project SEHiNGS......cccvvvierrrerrrirr st res st se s s ss s ssesessesassessesesaesesassassesassenes 1190
ROULING ...cceieeerir sttt sn s s n s n e n s 1190
URL PAEBINS ... 1191
Creating Routes for the Contact and AbOUt Pages..........cccecrermrercrerencncririree s 1192
Redirecting USiNG ROULINGc.cceeireiccirn e 1192
Adding AUTOLOIDAL..........coeiieeeercree e s e sa s n s en e s nn s enennnnens 1193
Controllers and ACHONS ..o 1194
ACHON RESUIS.....cciiiiiisiisisisiii s 1194
Adding the INVEntory CONEIOIIETccveverererrerer s re s rae e sae e sse e s e sassesae e sassesassasaesanaens 1194
Examine and Update the InventoryController ... 1197
The Razor VIeW ENQGINE........cccvcverceriersirses s se e s e s s sn s s s nnas 1205
RAZOE SYNTAX.....ccciuieieirereecrir ettt e s s s e s s s e e e s se e e e s nn e e nas 1205
Statements, Code BIOCKS, aNd MarkUp.........ccevereerererreresennessesssessessnses 1205
BUIIE-in HTIML HEIPEIS.... ottt se et se e st ettt st st st sa e 1206
CUSTOM HTIML HEIPEIS ...ttt e s e 1208
RAzZOr FUNCHIONS ..o 1209
RAZOK DEIBGALES.........cerereeeeeerereecrer et e s s s e s e e e s e e e nas 1209
MVC VIBWS....ceeeieeesereeessesssessssssesss e ssessssssas e ssessssesssssssessssssssssssssssssssssssnssssssansanens 1209
I 0113 1210
PArTIAl VIBWS ... e 1211
SeNding Data 10 VIBWS.......covveeeeerrrreesersrse e ss s e s sas s s ssssssssssssssssssssnssnes 1211
The Display Data Annotation ... nens 1213
Custom Metadata Files.........cvmnni s 1213

xlv

CONTENTS

Razor TEMPIALEScccvceeeeriecire e s s 1214
Create a Custom Display TEMPIALEccccvureeererereesirreescr e 1214
Create a Custom Editor TEMPIALE ... 1216

WOrking With FOTMScocviiieririr s ss s se e se e sn s sn s e s snssns s nes 1217
The BeginFOrm() HTIML HEIPEI......covvceeeeeererereerereresereesersesessesessesassessssessessssessssssassessssessessssssassenssaens 1217
The AntiForgeryTOKen() HTML HEIPETcoeoveueeerereriereesereesersesessesessessssessssessesesssssssessssessessssssassensssens 1218

Updating the Delete VIEW ... se s e sne s snesness 1218

ValidAtION.......coeeeeiccesere e 1218
DiSPIAYING EITOTS ... se s ess e s s s s se s se s s s s e sse s s ssssassssssssassnsnnes 1218
Disable Client-Side Validation............coovererinncnenenncseeescseee s 1219
Client-Side ValIdAtioNc.coorrerenennrrceee s 1219

The Final Word on ASP.NET MVC........c.cooninnnnnsse s 1220

SUMMAIY ...ttt s s s s e s s s s s s sn s n e r e a e s e r s sn e nenr e s e nnesne s e s e snensannennnnnns 1220

Chapter 30: Introducing ASP.NET Web APL.........ccccussemmmnnsssnnnmmssssssnmsssssssssssssnns 1223

Introducing ASPNET Weh AP ... e sn e nne s 1223
Creating the Web APl PrOJECT........coc et sn s sr s 1223
Creating the InventoryController Class ... s sss e sss s 1225
{01111 T RSP SRRRSR 1226
JavaScript Object Notation ... 1228
Web APIACEION RESUILS ..o 1229
Serialization Issues with EntityFramework ... sssessssens 1230
Getting INVENOry Data..........ccciecienrrr e e e p e 1230
Adding the DispoSse() MEtNOM ... s r e s se e sa e nnenens 1231
USING FIAAIBT ...t a e e a e e e n e s 1231
Updating an Inventory Record (HEPPUL)c.cceeerrerecrecrr e sn e s 1232
Adding Inventory Records (HEPPOST)........cccvericrnirrcre e sse e sns e snnnens 1234
Deleting Inventory Records (HEtpDEIEte)cccevercereicresercsere e sn s 1235
Wrapping UP ASPINET AP ...t ss s s sre s st st sas s s e snssnssssssnens 1236

Updating CarLotMVC to Use CarLOtWEDAPI............ccccovverrnmrenenseresesesesse e sesennes 1236
Adding the CarLotMVC ApPlICALIONcccoerereecirerecscre e s 1236
Updating the MVGC INVeNtOryCOoNTIOIIEr...........ccceeeeireercrerrescrere s seenns 1237

xlvi

CONTENTS

Updating the INAeX() ACTION.......cciviriri e s sa e sr e sa s s sa e sa e sa e e sa e e sn e nn 1238
Updating the DetailS() ACLIONcoeveririrererere e s sr e saesassr e sa e sa e saesaenaan 1238
Updating the Create() ACHON.ccvceverererererererererrsserse s rsesessesss e rae e ssssesaesassesassessssesaesessesassesassenes 1239
Updating the Edit() ACLIONScoevereriririne e sse s s e s s s saesassa s sassaesassaesaas 1239
Updating the Delete() ACLIONScccveveririrerere e sa e s sr e s sa e sae e e sas e saesaesaas 1240
1 111 7 1242

Part IX: .NET COREccousmmmsmmmsmmmssmsssmssmsssnssssssssssssssssssssnsannsnnns 1243

Chapter 31: The Philosophy of .NET COIecuccsmsssssmsssnsssssnsssssnsssssnsssssnnssssnnss 1245
From Project K10 .NET COre........ccccerierenmriernsscresnse e e sss e ses e snssessessssesnssnnnens 1245
The Future of the Full .NET FrameworK..........c.cocvnnnnnnssssssssssssssssssssssees 1246
The GOalS Of.NET COI......cccueerereirmscissssiss s 1246
Cross-Platform SUPPO ... s s e e a e s 1247
PEITOIMANCE ... 1248
Portable Class Libraries with .NET Standard...........c.cocornnnnnninnnnnnsssssss s 1248
Portable or Stand-Alone Deployment MOEIS...........cccourieerirnescnernccere e 1248
Full Command-Ling SUPPOIL........ccu et s s sa s 1248
OPEBIN SOUICE ...ttt e s e e se e ee s A A e e e E e A e e Re A e Re A e b e e Re e e Re e e ae e e e ns 1249
Interoperability with the .NET Framework...........ccorrennicscrsccirsee e 1249
The Composition 0f .NET COTE.........cccvververrerierserserseres s e e e e e e ss s e s nas 1249
The .NET Core RUNtiME (COrECLR).......cccoeeerrrreererrrrseesesss e e sesesseesesesss s e e sssssssssssssssnssssssssaes 1249
The Framework Libraries (COrEFX)uouuummmnmrrrrnssesesssssesessssssssessssssssssssssssssssssssssssssssessssssssssaes 1249
The SDK Tools and the dotnet APp HOST..........ccoeieencnirnesesirre e nes 1250
The Language COMPIIEIS.......ccveerererrrerereressessessssssssesssssesssessssssssessssesssssssssssssssssssssssssssessasssssassaes 1250
The .NET Core Support LIfECYCIEccvvrverrerrerierrerrersesses s ses e ses s e s s snsssssnssasnns 1251
INStalling .NET COre 2.0......coeoeeeeeceeeceene e s s s s sn e s s sn s s snssnssns s s 1251
Comparison with the Full .NET FrameWOrK..........cccuvvrerierrerieesenseesessesssesssessesssssaes 1252
Reduced Number of App Models SUPPOEM.........cveeerrrrrienererrnesesersssesesesssssesessssesssesessssssesssssssssnnes 1252
Fewer APIs and Subsystems IMpIementedccccvrrcennnncsesssesesss e 1253
E3 U] 1] 1P 7 1253

xlvii

CONTENTS

Chapter 32: Introducing Entity Framework Core..........ccusemmmnssssnnsnsssssssssssssass 1259

Comparing Feature Sets.......ccoorriiernicnssne e sas e 1255
Features Not RepliCated ..o e sa e e e sa e sa e e sa e nn e nn 1256
Changes fIOM EF Bcccccoeeeccircrncrec e s r st sn s s p s nn e 1256
New Features in EF COre ... ssssens 1256
USAQE SCENAIIOSceueeereerreerresersesnseses e s e e e e s e s s se e sesesse s b s e s et Re e e Re e s ae R e e e R e e e RenesRenenaennenens 1257

Creating AUtOLOTCOrEDAL_COIE2.......cccvveererreererreererssessessseseessessssssessssssessssssesssessess 1257
Creating the Projects and SOIULION ..o 1258
Adding the NUGETL PACKAGEScccecrerrrreerirrrsesresessessesesssssesessssssssessssssssesssssssssssssssssssssssssssasssssassaes 1258
Adding the MOUEl CIASSEScouvueerererrrreereresseesesesssssesesssesesessssssssessssssssessssssssssssssssssssssssesssssssassaes 1259
Creating the AUTOLOTCONTEXL.........ccouruieeererirecrer e 1263
Creating the Database With Migrations ..o 1267
Initializing the Database With Data.............ccceererriernrnnrr e 1268

Adding Repositories for COde REUSEcccererrrrererrerreeneeree e ses s e e e sss e ssssessesnns 1272
Adding the IREPO INTEITACEcccceeeecereerere e rereres e ree s rae s e s e e saerae e saesesaesesaesasaesae e saesesassanaenenaens 1272
Adding the BASEREPOcceeereererererereererererserereressessesessssessesassessssessssessesssssssssesassessssessesssassassensnsens 1272
Creating the INVENtOryREPO.......cccv it 1276

Test-Driving AUTOLOIDAL_COre2coeereerirerercre s sssse s 1277

111 1] 11 2SSOSR 1278

Chapter 33: Introducing ASP.NET Core Web Applications..........cccusmmrsssnnssssanas 1279

The ASP.NET Core Web App Template.........ccccvvreervercercensssesses s ses e e e 1279
The NeW Project WIZard.........c.ccccecererencninnesscsessssese s sss s sssesssssssssssssssns 1279
ASP.NET Core Project Organization............c.ooceceeeerenesesessssssesesssssssessssssssessssssssssssssssssssssssssssssssssaes 1281
Add the Data ACCESS LIDIary........coo et 1281
Update the NUGETt PACKAGESccceururuecrerireesiseseesesessss e essssssesesss s sessssssssesssssssssssssssssssssassasnes 1282
Running ASP.NET Core AppPliCAtioNS........cccouvueeerererreeseresssesesesssssesessssssesesssssssessssssssesssssssssssssssssnns 1282
Deploying ASP.NET Core APPliCALIONScceceeererreenirenrnesesesssssesesesssesesss s sssesssssssessssssssesesssssnsnns 1284

What’s New in ASP.INET COTE.......cccormrmmmrmmmsmissss s sessssssns 1284
Unified Story for Web Applications and SErVICES.........ccourrerrrererrerereresererereressessesessesessesessessssees 1285
Built-in Dependency INJECLION..........ccoveererererererereresrere s re s saeras e ree e se e aesasaesa e e saesesaesesaesassesanseres 1285
Cloud-Ready Environment-Based Configuration SyStemcccecveeererrerreresserereveseresesseseeenns 1285

xlviii

CONTENTS

Running on .NET Core or the Full .NET FrameEWOrKccceverrererrerenrerseseresesensssessssessesessssessessssenes 1287
Lightweight and Modular HTTP Request Pipeline..........ccvvvirenennnnnnnnns s ses e e sessenens 1288
Integration of Client-Side FramMEWOIKS.........ccccvrererrererererereseresessersssessssessesessessssessesesssssssessssessssenes 1288
BLE: (0I5 (o1 01T SO SS 1288
VIEW COMPONENTS.....ccceveeereererererersnsersesessessssesessessssessesessssssssssssessssessssesssssssessssessssessesessessssssansensnsens 1296
The Razor View ENgine ChangEs ... ssssssssssssens 1296
Building AUtOLOtMVC_COr2..........ccccereerererirer s sn e e s snssnssns e 1296
THE Program.Cs File...........cocoeerricrerieccrisi e 1297
The SEArtUP.CS FilB.... e e e s e e e e 1299
Package Management With BOWE ..o 1302
Bundling and MinifiCation............cccourreicrriccrinneeir e 1303
Client-Side Content (WWWIOOT FOIARN)...........coceererieeeccecireeere et 1307
The Models, Controllers, and VIEWS FOIAEIS........ccucvrerrerrrrerrerrer s sessessessessessesssssasssssssssssssssssssssssenns 1307
Controllers and ACHIONScccovceerrererrese e 1308
The Controller BaSe ClaSS.........c.cereeerererererererereresenes 1308
T 110 PP 1309
VIBWRESUILS ... 1310
Add the Inventory CONTrOIIErcocevevererere e se e sa e sn e n e 1310
Update the INVENtOryCONTIOIIETcceeeeerereerererereres e e sas e s e e se e sse e sse s s e sse e saesesaesassesasseses 1312
LT 1317
Update the View IMPorts File.......ccocrcrrerrcre st se s sas s 1317
THE LAYOUL VIBW ...ttt nenn s 1317
The Validation Scripts Partial VIEWcccirernnnncnesserin s sss s sessssessessssens 1318
The Inventory Display TEMPIALE...........cccoceereieerrerecrcre e s 1319
The Inventory Editor TEMPIALE ... s 1320
THE INABX VIBW......ciiiiiiiiiiiiie e 1321
The DEtails VIBW ... 1322
THE Create VIBW........cocvrviriiririninisiisisise s 1322
THE EAIEVIEW ...ttt 1323
THE DEIETE VIBW ...t 1323
WrapPing UP VIBWS.....coueciiiierirenis sttt sa s s sae st st s st st s sesnssassssssnens 1324

CONTENTS

VieW COMPONENTS......ccoeeeereereirerie e sse e sae e sse e sae s s s saesa s sa s s e sa e nesnesr s nnesnesannas 1324
Building the Server-Side COUE.........oourriirererreeserirseses e se s s e 1324
Building the Client-Side COUE..........oiiierirerecrerireescren s 1326
INVOKING VieW COMPONENLES........ccoiirircriecrre et se e s e sn e s s s s e se e st s sne s 1327
Invoking View Components as Custom Tag HEIPers ... sessssessessssenns 1327
Adding the View Component to AUTOLOtMVC_COrE2.........c.covvrnmsmsmsmnmsmsmsmsssssmsssssssssssssssssssssssssssenes 1327

111 1] 11T 2SS 1328

Chapter 34: Introducing ASP.NET Core Service Applications.............ccususesuees 1329

The ASP.NET Core Web APl Template..........ccocvvereerceriersensssesses s ses e e 1329
The New Project WIZard..........coceercicinreeereseesese e 1329
ASP.NET Core Server Project Organizationccccccoovveennennienncnnc s sessssssessssessssessssesssssssens 1331
Add the Data ACCESS LIDIary........ccovciiciicnernerssc e sa s se e snsnens 1331
Update and Add the NuGet PaCKagesccecueererrnsenenene e sssssessssessssessssesssssssssssssssssenns 1331
Run and Deploy Service APPlICALIONS ... 1331

What'’s Changed in ASP.NET COre SErviCescccumrrrrressessmssessessssssssssssssesssssssssnnns 1331
Format for Returned JSON ..o s 1332
Explicit Routing for HTTPVEIDS ... sne s 1332

Control Model Binding in ASP.INET COre.........ccocernrmrenmsiernsesesessessesesesessessesessessssennes 1333

BUild AULOLOTAPI_COFE2........ceeeeereernrersesssesss e ssesssesss e ssesns e ssssessesssesssssssessssssnsnssnens 1333
Add the CONNECLION SENG......ccoveeeeerereerere et s rre e r e e s rae e raesesaesesaesasaesae e saesesassanaenanaens 1333
Update the Program.cs File for Data Initializationcccceevevrcererresre e 1334
Update the STartup.CS Flecveeceeereeirrecser s e 1334
Add Application-wide Exception Handling..........cccoveerererrnencneninescsessesesesesssse e sessssens 1335
Add the INVentory CONTIOIIET ... s 1338
Wrapping Up ASP.NET Core Service AppliCationsococeceerereienerenenesesesse s eesesnsnens 1343

Update AutoLotMVC_Core2 to Use AUtOLOTAPI_COre2.........cccceevrerveererreererseesaessnnsaens 1343
Copy and Add the AutoLotMVC_Core2 APplICALIONcccceceerreeseserenssesessssssesessssssssessssssssesssssssssnnns 1344
Remove AutoLotDAL_Core2 from AULOLOTMVGC_COre2.........cceveveeveereererrersenseesessssssssssssssessssssssassanens 1344
Create a New INVENtOryCONTIOIIE ... e 1345

RS 1] 1] 1P 2SS 1351

About the Authors

Andrew Troelsen has more than 20 years of experience in the software
industry. During this time he has worked as a developer, educator, author,
public speaker, team lead, and now a manager at Thomson Reuters in the
big data platform. He is the author of numerous books in the Microsoft
universe covering C++-based COM development with ATL, COM and
.NET interoperability, Visual Basic, and the award-winning C# and the
.NET platform (which would be this book right here). He has a master

of science degree in software engineering (MSSE) from the University

of St. Thomas and is working on a second master of science degree in
computational linguistics (CLMS) from the University of Washington.

Philip Japikse is an international speaker, Microsoft MVP, ASPInsider,
MCSD, CSM, and CSP, and passionate member of the developer
community. Phil has been working with .NET since the first betas,
developing software for more than 30 years, and heavily involved in the
agile community since 2005. Phil is the lead director for the Cincinnati
.NET User’s Group (www.cinnug.org), founded the Cincinnati Day of
Agile (www.dayofagile.org), and volunteers for the National Ski Patrol.
Phil is also a published author with LinkedIn Learning (https://www.
lynda.com/Phil-Japikse/7908546-1.html). During the day, Phil works
as an enterprise consultant and agile coach for large to medium firms
throughout the United States. Phil enjoys to learn new tech and is always
striving to improve his craft. You can follow Phil on Twitter via www.
twitter.com/skimedic and read his blog at www.skimedic.com/blog.

li

http://www.cinnug.org/
http://www.dayofagile.org/
https://www.lynda.com/Phil-Japikse/7908546-1.html
https://www.lynda.com/Phil-Japikse/7908546-1.html
http://www.twitter.com/skimedic
http://www.twitter.com/skimedic
http://www.skimedic.com/blog

About the Technical Reviewers

Eric Potter is a software architect for Aptera Software and a Microsoft MVP
for Visual Studio and development technologies. He works primarily in

the .NET web platform but loves opportunities to try other stacks. He has
been developing high-quality custom software solutions since 2001. At
Aptera, he has successfully delivered solutions for clients in a wide variety
of industries. In his spare time, he loves to tinker with Arduino projects.

He fondly remembers what it was like to develop software for the Palm OS.
He has an amazing wife and five wonderful children. He blogs at
http://humbletoolsmith.com/, and you can follow him on Twitter as
@pottereric.

After almost two decades writing software professionally (and a few years
unprofessionally before that), Lee Brandt still continues to learn every
day. He has led teams in small and large companies and always manages
to keep the business needs at the forefront of software development
efforts. He speaks internationally about software development, from

both a technical and business perspective, and loves to teach others

what he learns. Lee writes software in Objective-C, JavaScript, and C#...
mostly. He is a Microsoft Most Valuable Professional in Visual Studio and
development technologies and one of the directors of the Kansas City
Developer Conference (KCDC). Lee is also a decorated Gulf War veteran, a
husband, and a proud pet parent and loves to play the drums whenever he
gets any spare time.

Sean Whitesell is a software developer in Tulsa, Oklahoma, with more
than 17 years of experience in client-server, web, embedded, and
electronics development. He is the president of the Tulsa .NET User Group
and frequently speaks at area user groups and conferences. His passions
are in solving problems programmatically, coding craftsmanship, and
teaching. He is also a chaplain and sound engineer at his church and
teaches self-defense classes for children.

liii

http://humbletoolsmith.com/

Acknowledgments

As always, I would like to offer a heartfelt thank-you to the entire team at Apress. I have been lucky to have
worked with Apress on a variety of books since 2001. Beyond publishing high-quality technical material, the
staff is excellent, and without them this book would not be possible. Thanks, everyone!

I also want to thank my co-author Philip Japikse. Thanks, Phil, for working hard to maintain the same
approachable vibe of the book, while still adding your own personal expertise and voice. I believe our book
(and those who read it) will most certainly benefit from this new partnership!

Last but not least, I want to thank my wife, Mandy, and my son, Soren, for supporting me.

—Andrew Troelsen

I also want to thank Apress and the entire team involved in writing this book. As I've come to expect with all
of my books for Apress, I am very impressed with the dedication and level of support we received during the
writing process. I want to thank you, the reader, for reading this book and hope that you will find it as helpful
in your career as it has been in mine. Lastly, I couldn’t have done this without my family and the support I've
had from them. Between reading my work and proofing it and their understanding of the time involved, I
couldn’t have done it without you! Love you all!

—Philip Japikse

Iv

Introduction

We’re a Team That Includes You

Technology authors write for a demanding group of people (for the best of possible reasons). You know

that building software solutions using any platform or language is extremely complicated and is specific to
your department, company, client base, and subject matter. Perhaps you work in the electronic publishing
industry, develop systems for the state or local government, or work at NASA or a branch of the military.
Collectively, we have worked in a variety of industries, including developing children’s educational software
(Oregon Trail/Amazon Trail), various enterprise systems, and projects within the medical and financial
industries. The chances are almost 100 percent that the code you write at your place of employment has little
to do with the code we have authored over the years.

Therefore, in this book, we have deliberately chosen to avoid creating demonstrations that tie the
example code to a specific industry or vein of programming. Given this, we explain C#, OOP, the CLR, and
the .NET base class libraries using industry-agnostic examples. Rather than having every blessed example
fill a grid with data, calculate payroll, or whatnot, we stick to subject matter we can all relate to: automobiles
(with some geometric structures and employee payroll systems thrown in for good measure). And that’s
where you come in.

Our job is to explain the C# programming language and the core aspects of the .NET platform the best
we possibly can. As well, we will do everything we can to equip you with the tools and strategies you need to
continue your studies at this book’s conclusion.

Your job is to take this information and apply it to your specific programming assignments. We obviously
understand that your projects most likely don’t revolve around automobiles with friendly pet names (Zippy the
BMW or a Yugo named Clunker, among others), but that’s what applied knowledge is all about!

Rest assured, once you understand the topics and concepts presented within this text, you will be in a
perfect position to build .NET solutions that map to your own unique programming environment.

An Overview of This Book

Pro C# 7.0is logically divided into nine distinct parts, each of which contains a number of related chapters.
Here is a part-by-part and chapter-by-chapter breakdown of the text.

Part I: Introducing C# and the .NET Platform

The purpose of Part I is to acclimate you to the nature of the .NET platform and various development tools
used during the construction of .NET applications.

Ivii

INTRODUCTION

Chapter 1: The Philosophy of .NET

This first chapter functions as the backbone for the remainder of the text. The primary goal of this chapter
is to acquaint you with a number of .NET-centric building blocks, such as the Common Language Runtime,
Common Type System, Common Language Specification, and base class libraries. Here, you will take an
initial look at the C# programming language and the .NET assembly format. We wrap up by examining the
platform-independent nature of the .NET platform.

Chapter 2: Building C# Applications

The goal of this chapter is to introduce you to the process of compiling C# source code files. Here, you will
learn about the completely free (and fully functional) Visual Studio Community edition upon which this
book is based as well as learn about the Professional and Enterprise editions of Visual Studio 2017. You

will also learn how to configure your development machine using the new workload-based Visual Studio
installation process, enabling C# 7.1 features in your projects, as well as installing the all-important .NET 4.7
and .NET Core 2.0 frameworks.

Part II: Core C# Programming

The topics presented in this part of the book are quite important because you will use them regardless of
which type of .NET software you intend to develop (e.g., web applications, desktop GUI applications, code
libraries, or Windows services). Here, you will learn about the fundamental data types of .NET, work with
text manipulation, and learn the role of various C# parameter modifiers (including optional and named
arguments).

Chapter 3: Core C# Programming Constructs, Part |

This chapter begins your formal investigation of the C# programming language. Here, you will learn about
the role of the Main() method and numerous details regarding the intrinsic data types of the .NET platform
and variable declaration, and you will work with and manipulate textual data using System.String and
System.Text.StringBuilder. You will also examine iteration and decision constructs, narrowing and
widening operations, and the unchecked keyword.

Chapter 4: Core C# Programming Constructs, Part Il

This chapter completes your examination of the core aspects of C#, beginning with creating and
manipulating arrays of data. Next you examine how to construct overloaded type methods and define
parameters using the out, ref, and params keywords. You will also learn about the enum type, structures,
and nullable data types, and you will understand the distinction between value types and reference types.
Finally, you will learn about tuples, a new feature in C# 7.

Part I1I: Object-Oriented Programming with C#

In this part, you will come to understand the core constructs of the C# language, including the details of
object-oriented programming. This part will also examine how to process runtime exceptions and will dive
into the details of working with strongly typed interfaces.

lviii

http://dx.doi.org/10.1007/978-1-4842-3018-3_1
http://dx.doi.org/10.1007/978-1-4842-3018-3_2
http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

INTRODUCTION

Chapter 5: Understanding Encapsulation

This chapter begins your examination of object-oriented programming (OOP) using the C# programming
language. After you are introduced to the pillars of OOP (encapsulation, inheritance, and polymorphism),
the remainder of this chapter will show you how to build robust class types using constructors, properties,
static members, constants, and read-only fields. You will wrap up with an examination of partial type
definitions, object initialization syntax, and automatic properties.

Chapter 6: Understanding Inheritance and Polymorphism

Here, you will examine the remaining pillars of OOP (inheritance and polymorphism), which allow you to
build families of related class types. As you do this, you will examine the role of virtual methods, abstract
methods (and abstract base classes), and the nature of the polymorphic interface. Then you will explore
pattern matching, new in C# 7. Last but not least, this chapter will explain the role of the supreme base class
of the .NET platform, System.Object.

Chapter 7: Understanding Structured Exception Handling

The point of this chapter is to discuss how to handle runtime anomalies in your codebase through the use
of structured exception handling. Not only will you learn about the C# keywords that allow you to handle
such problems (try, catch, throw, when, and finally), but you will also come to understand the distinction
between application-level and system-level exceptions. In addition, this chapter will examine various tools
within Visual Studio that allow you to debug the exceptions that escape your notice.

Chapter 8: Working with Interfaces

The material in this chapter builds upon your understanding of object-based development by covering the
topic of interface-based programming. Here, you will learn how to define classes and structures that support
multiple behaviors, how to discover these behaviors at runtime, and how to selectively hide particular
behaviors using explicit interface implementation. In addition to creating a number of custom interfaces,
you will also learn how to implement standard interfaces found within the .NET platform. You will use these
to build objects that can be sorted, copied, enumerated, and compared.

Part IV: Advanced C# Programming

This part of the book will deepen your understanding of the C# language by walking you through a number
of more advanced (but important) concepts. Here, you will complete your examination of the .NET type
system by investigating interfaces and delegates. You will also learn about the role of generics, take a first
look at Language Integrated Query, and examine a number of more advanced features of C# (e.g., extension
methods, partial methods, pointer manipulation, and object lifetime).

Chapter 9: Collections and Generics

This chapter explores the topic of generics. As you will see, generic programming gives you a way to create
types and type members, which contain various placeholders that can be specified by the caller. In a nutshell,
generics greatly enhance application performance and type safety. Not only will you explore various generic
types within the System.Collections.Generic namespace, but you will also learn how to build your own
generic methods and types (with and without constraints).

lix

http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_7
http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_9

INTRODUCTION

Chapter 10: Delegates, Events, and Lambda Expressions

The purpose of Chapter 10 is to demystify the delegate type. Simply put, a .NET delegate is an object that
points to other methods in your application. Using this type, you can build systems that allow multiple
objects to engage in a two-way conversation. After you have examined the use of .NET delegates, you will
then be introduced to the C# event keyword, which you can use to simplify the manipulation of raw delegate
programming. You will wrap up this chapter by investigating the role of the C# lambda operator (=>) and
exploring the connection between delegates, anonymous methods, and lambda expressions.

Chapter 11: Advanced C# Language Features

This chapter deepens your understanding of the C# programming language by introducing you to a number
of advanced programming techniques. Here, you will learn how to overload operators and create custom
conversion routines (both implicit and explicit) for your types. You will also learn how to build and interact
with type indexers, as well as work with extension methods, anonymous types, partial methods, and C#
pointers using an unsafe code context.

Chapter 12: LINQ to Objects

This chapter begins your examination of Language Integrated Query (LINQ). LINQ allows you to build
strongly typed query expressions that can be applied to a number of LINQ targets to manipulate data in the
broadest sense of the word. Here, you will learn about LINQ to Objects, which allows you to apply LINQ
expressions to containers of data (e.g., arrays, collections, and custom types). This information will serve you
well as you encounter a number of additional LINQ APIs throughout the remainder of this book.

Chapter 13: Understanding Object Lifetime

The final chapter of this part examines how the CLR manages memory using the .NET garbage collector.
Here, you will come to understand the role of application roots, object generations, and the System.GC type.
Once you understand the basics, you will examine the topics of disposable objects (using the IDisposable
interface) and the finalization process (using the System.0Object.Finalize() method). This chapter will
also investigate the Lazy<T> class, which allows you to define data that will not be allocated until requested
by a caller. As you will see, this feature can be helpful when you want to ensure you do not clutter the heap
with objects that are not actually required by your programs.

Part V: Programming with .NET Assemblies

Part V dives into the details of the .NET assembly format. Not only will you learn how to deploy and configure
.NET code libraries, but you will also come to understand the internal composition of a .NET binary image.
This part also explains the role of .NET attributes and the role of resolving type information at runtime. This
section will also explain the role of the Dynamic Language Runtime (DLR) and the C# dynamic keyword. Later
chapters will examine some fairly advanced topics regarding assemblies, such as application domains, the
syntax of Common Intermediate Language (CIL), and the construction of in-memory assemblies.

Chapter 14: Building and Configuring Class Libraries

At a high level, assembly is the term used to describe a *.d11 or *.exe binary file created with a .NET
compiler. However, the true story of NET assemblies is far richer than that. Here, you will learn the
distinction between single-file and multifile assemblies, as well as how to build and deploy each entity.

Ix

http://dx.doi.org/10.1007/978-1-4842-3018-3_10
http://dx.doi.org/10.1007/978-1-4842-3018-3_10
http://dx.doi.org/10.1007/978-1-4842-3018-3_11
http://dx.doi.org/10.1007/978-1-4842-3018-3_12
http://dx.doi.org/10.1007/978-1-4842-3018-3_13
http://dx.doi.org/10.1007/978-1-4842-3018-3_14

INTRODUCTION

You'll also examine how you can configure private and shared assemblies using XML-based *. config files
and publisher policy assemblies. Along the way, you will investigate the internal structure of the global
assembly cache (GAC).

Chapter 15: Type Reflection, Late Binding, and Attribute-Based Programming

Chapter 15 continues your examination of .NET assemblies by checking out the process of runtime type
discovery using the System.Reflection namespace. Using the types of this namespace, you can build
applications that can read an assembly’s metadata on the fly. You will also learn how to load and create
types at runtime dynamically using late binding. The final topic of this chapter will explore the role of NET
attributes (both standard and custom). To illustrate the usefulness of each of these topics, the chapter shows
you how to construct an extendable Windows Forms application.

Chapter 16: Dynamic Types and the Dynamic Language Runtime

.NET 4.0 introduced a new aspect of the .NET runtime environment called the dynamic language runtime.
Using the DLR and the C# 2010 dynamic keyword, you can define data that is not truly resolved until runtime.
Using these features simplifies some complex .NET programming tasks dramatically. In this chapter, you will
learn some practical uses of dynamic data, including how to leverage the .NET reflection APIs in a streamlined
manner, as well as how to communicate with legacy COM libraries with a minimum of fuss and bother.

Chapter 17: Processes, AppDomains, and Object Contexts

Now that you have a solid understanding of assemblies, this chapter dives deeper into the composition

of aloaded .NET executable. The goal of this chapter is to illustrate the relationship between processes,
application domains, and contextual boundaries. These topics provide the proper foundation for Chapter 19,
where you will examine the construction of multithreaded applications.

Chapter 18: Understanding CIL and the Role of Dynamic Assemblies

The goal of the final chapter in this section is twofold. In the first half (more or less), you will examine the
syntax and semantics of CIL in much greater detail than in previous chapters. The remainder of this chapter
will cover the role of the System.Reflection.Emit namespace. You can use these types to build software
that can generate .NET assemblies in memory at runtime. Formally speaking, assemblies defined and
executed in memory are termed dynamic assemblies.

Part VI: Introducing the .NET Base Class Libraries

By this point in the text, you have a solid handle on the C# language and the details of the .NET assembly
format. Part VI leverages your newfound knowledge by exploring a number of commonly used services
found within the base class libraries, including the creation of multithreaded applications, file I/O, and
database access using ADO.NET. This part also covers the construction of distributed applications using
Windows Communication Foundation and the LINQ to XML API.

Chapter 19: Multithreaded, Parallel, and Async Programming

This chapter examines how to build multithreaded applications and illustrates a number of techniques
you can use to author thread-safe code. The chapter opens by revisiting the .NET delegate type to ensure,
explaining a delegate’s intrinsic support for asynchronous method invocations. Next, you will investigate

Ixi

http://dx.doi.org/10.1007/978-1-4842-3018-3_15
http://dx.doi.org/10.1007/978-1-4842-3018-3_15
http://dx.doi.org/10.1007/978-1-4842-3018-3_16
http://dx.doi.org/10.1007/978-1-4842-3018-3_17
http://dx.doi.org/10.1007/978-1-4842-3018-3_19
http://dx.doi.org/10.1007/978-1-4842-3018-3_18
http://dx.doi.org/10.1007/978-1-4842-3018-3_19

INTRODUCTION

the types within the System.Threading namespace. The next section covers the Task Parallel Library (TPL).
Using the TPL, .NET developers can build applications that distribute their workload across all available
CPUs in a wickedly simple manner. At this point, you will also learn about the role of Parallel LINQ, which
provides a way to create LINQ queries that scale across multiple machine cores. The remainder of the
chapter covers creating nonblocking calls using the async/await keywords, introduced in C# 5, and local
functions and generalized async return types, both new in C# 7.

Chapter 20: File I/0 and Object Serialization

The System. I0 namespace allows you to interact with a machine’s file and directory structure. Over the
course of this chapter, you will learn how to create (and destroy) a directory system programmatically. You
will also learn how to move data into and out of various streams (e.g., file based, string based, and memory
based). The latter part of this chapter will examine the object serialization services of the .NET platform.
Simply put, serialization allows you to persist the state of an object (or a set of related objects) into a stream
for later use. Deserialization (as you might expect) is the process of plucking an object from the stream

into memory for consumption by your application. After you understand the basics, you will learn how to
customize the serialization process using the ISerializable interface and a set of .NET attributes.

Chapter 21: Data Access with ADO.NET

In this first of two database-centric chapters using the full NET Framework, you will take your first look at the
database access API of the .NET platform, ADO.NET. Specifically, this chapter will introduce you to the role of
.NET data providers and how to communicate with a relational database using the connected layer of ADO.NET,
which is represented by connection objects, command objects, transaction objects, and data reader objects.

Chapter 22: Introducing Entity Framework 6

This chapter wraps up your investigation of ADO.NET by examining the role of Entity Framework (EF) 6.

EF is an object-relational mapping (ORM) framework that provides a way to author data-access code using
strongly typed classes that directly map to your business model. Here, you will come to understand the

role of the EF DbContext, using data annotations and the Fluent API to shape your database, implementing
repositories for encapsulating common code, transactions, migrations, concurrency checking, and
command interception. While doing so, you will learn to interact with relational databases using LINQ to
Entities. You will also build the custom data access library (AutoLotDAL.d11), which you will use in several of
the remaining chapters of the book.

Chapter 23: Introducing Windows Communication Foundation

Until this point in the book, all the sample applications have executed on a single computer. In this

chapter, you will learn about the Windows Communication Foundation (WCF) API that allows you to build
distributed applications in a symmetrical manner, regardless of their underlying plumbing. This chapter will
expose you to the construction of WCF services, hosts, and clients, as well as using XML-based configuration
files to specify addresses, bindings, and contracts declaratively.

Part VII: Windows Presentation Foundation

The initial desktop GUI API supported by the .NET platform was termed Windows Forms. While this
API is still fully supported in the full .NET Framework, .NET 3.0 introduced programmers to an amazing
API called Windows Presentation Foundation (WFP). Unlike Windows Forms, this supercharged Ul

Ixii

http://dx.doi.org/10.1007/978-1-4842-3018-3_20
http://dx.doi.org/10.1007/978-1-4842-3018-3_21
http://dx.doi.org/10.1007/978-1-4842-3018-3_22
http://dx.doi.org/10.1007/978-1-4842-3018-3_23

INTRODUCTION

framework integrates a number of key services, including data binding, 2D and 3D graphics, animations,
and rich documents, into a single, unified object model. This is all accomplished using a declarative
markup grammar called Extensible Application Markup Language (XAML). Furthermore, the WPF control
architecture provides a trivial way to restyle the look and feel of a typical control radically using little more
than some well-formed XAML.

Chapter 24: Introducing Windows Presentation Foundation and XAML

In this chapter, you will begin by examining the motivation behind the creation of WPF (when there was
already a desktop development framework in .NET). Then, you will learn about the syntax of XAML and,
finally, take a look at the Visual Studio support for building WPF applications.

Chapter 25: WPF Controls, Layouts, Events, and Data Binding

This chapter will expose you to the process of using intrinsic WPF controls and layout managers. For
example, you will learn to build menu systems, splitter windows, toolbars, and status bars. This chapter
will also introduce you to a number of WPF APIs (and their related controls), including the WPF Ink API,
commands, routed events, the data-binding model, and dependency properties.

Chapter 26: WPF Graphics Rendering Services

WPF is a graphically intensive API; given this fact, WPF provides three ways to render graphics: shapes,
drawings and geometrics, and visuals. In this chapter, you will evaluate each option and learn about a
number of important graphics primitives (e.g., brushes, pens, and transformations) along the way. This
chapter will also examine ways to incorporate vector images into your WPF graphics, as well as how to
perform hit-testing operations against graphical data.

Chapter 27: WPF Resources, Animations, Styles, and Templates

This chapter will introduce you to three important (and interrelated) topics that will deepen your
understanding of the Windows Presentation Foundation API. The first order of business is to learn the role
of logical resources. As you will see, the logical resource (also termed an object resource) system provides a
way for you to name and refer to commonly used objects within a WPF application. Next, you will learn how
to define, execute, and control an animation sequence. Despite what you might be thinking, however, WPF
animations are not limited to the confines of video games or multimedia applications. You will wrap up the
chapter by learning about the role of WPF styles. Similar to a web page that uses CSS or the ASP.NET theme
engine, a WPF application can define a common look and feel for a set of controls.

Chapter 28: WPF Notifications, Commands, Validation, and MVVM

This chapter begins by examining three core WPF framework capabilities: notifications, validation, and
commands. In the notifications section, you will learn about observable models and collections and how
they keep your application data and UI in sync. Next, you will dig deeper into commands, building custom
commands to encapsulate your code. In the validation section, you will learn how to use the several
validation mechanisms available to use in WPF applications. The chapter closes with an examination of the
Model-View-ViewModel (MVVM) pattern and ends by creating an application that demonstrates the MVVM
pattern in action.

Ixiii

http://dx.doi.org/10.1007/978-1-4842-3018-3_24
http://dx.doi.org/10.1007/978-1-4842-3018-3_25
http://dx.doi.org/10.1007/978-1-4842-3018-3_26
http://dx.doi.org/10.1007/978-1-4842-3018-3_27
http://dx.doi.org/10.1007/978-1-4842-3018-3_28

INTRODUCTION

Part VIII: ASP.NET

Part VIII is devoted to an examination of constructing web applications using the ASP.NET programming
API. Microsoft designed ASP.NET MVC to leverage the Model-View-Controller pattern and is a lightweight
framework for building web applications. ASP.NET Web API 2.2 is based on (and similar to) ASP.NET MVC
and is a framework for building RESTful services.

Chapter 29: Introducing ASP.NET MVC

This chapter covers ASP.NET MVC. ASP.NET MVC is based on the Model-View-Controller (MVC) pattern,
and after getting an understanding of the MVC pattern, you will build an MVC application. You will learn
about Visual Studio scaffolding, routing, controllers, actions, and views. Then you will build an ASP.NET
MVC application using the data access layer you built in Chapter 22.

Chapter 30: Introducing ASP.NET Web API

In this chapter, you build a RESTful service using ASP.NET Web API 2.2. This service handles all create, read,
update, and delete (CRUD) operations on the Inventory data, again using the data access layer you built in
Chapter 22. Finally, you will update your ASP.NET MVC5 application to use the RESTful service as its data
access layer.

Part IX: .NET Core

Part IX is dedicated to .NET Core, the cross-platform rewrite of .NET. After learning about .NET Core in
general, the motivation, and the differences between .NET Core and the full . NET Framework, you will
re-create the AutoLot data access layer in Entity Framework Core. The final two chapters cover building
ASP.NET Core web applications and ASP.NET Core RESTful services.

Chapter 31: The Philosophy of .NET Core

This chapter introduces you to .NET Core, the revolutionary cross-platform version of .NET. You will learn
about the goals of .NET Core, the different parts (like the CoreCLR and CoreFX), and the .NET Core support
life cycle. After installing (and confirming the installation of) .NET Core, you will finish the chapter by
comparing .NET to the full NET Framework.

Chapter 32: Introducing Entity Framework Core

This chapter covers the .NET Core version of the Entity Framework. While many of the EF concepts still
hold true, there are some notable and important differences between EF 6 and EF Core. You will begin the
chapter by comparing EF 6 to EF Core and then dive right into creating AutoLotDAL_Core2, the EF Core
version of the data access layer you created in Chapter 22. This updated data access layer will be used by the
remaining chapters in this book.

Chapter 33: Introducing ASP.NET Core Web Applications

This is the first of two chapters on ASP.NET Core and deals with building MVC-style web applications.
You will start by using the new ASP.NET Core Web Application template to create the AutoLotMVC_Core2
application, and then you will dive into what’s new in ASP.NET Core (compared to ASP.NET MVC5),

Ixiv

http://dx.doi.org/10.1007/978-1-4842-3018-3_29
http://dx.doi.org/10.1007/978-1-4842-3018-3_22
http://dx.doi.org/10.1007/978-1-4842-3018-3_30
http://dx.doi.org/10.1007/978-1-4842-3018-3_22
http://dx.doi.org/10.1007/978-1-4842-3018-3_31
http://dx.doi.org/10.1007/978-1-4842-3018-3_32
http://dx.doi.org/10.1007/978-1-4842-3018-3_22
http://dx.doi.org/10.1007/978-1-4842-3018-3_33

INTRODUCTION

including dependency injection support, a new configuration system, environmental awareness, tag helpers,
and view components. You will finish the chapter by building the ASP.NET Core version of the AutoLotMVC
application (from Chapter 29), using AutoLotDAL_Core2 for the data access layer.

Chapter 34: Introducing ASP.NET Core Service Applications

This chapter concludes your look at ASP.NET Core by building a RESTful service using ASP.NET Core.
Instead of a separate (but similar) framework, services and web applications use the same codebase in
ASP.NET Core, with MVC and WEB API together at last. Just like the service you built in Chapter 30,
AutoLotAPI_Core2 handles all of the CRUD operations on the Inventory data using the AutoLotDAL_Core2
data access layer from Chapter 32. Finally, you will update your ASP.NET Core web application to use the
new service instead of calling AutoLotDAL_Core2 directly.

Downloadable Appendixes

In addition to the printed material, the GitHub repo contains the source code for this book (accessible via
WwwW.apress.com/9781484230176) and additional appendixes distributed as PDFs. These bonus appendixes
cover a number of additional APIs in the .NET platform that you might find useful in your line of work.
Specifically, you will find the following bonus material:

e Appendix A, “ADO.NET Data Sets, Data Tables, and Data Adapters”
e Appendix B, “Introducing LINQ to XML’

e Appendix C, “Introducing ASP.NET Web Forms”

e Appendix D, “ASP.NET Web Controls, Master Pages, and Themes”

e Appendix E, “ASP.NET State Management Techniques”

Obtaining This Book’s Source Code

You can find all the code examples contained in this book available at the public GitHub repo (XX). You will
find that the code projects have been partitioned on a chapter-by-chapter basis.

On a related note, be aware that you will find “Source Code” notes, such as the following, in all the
book’s chapters. These notes serve as your visual cue that you can load the example under discussion into
Visual Studio for further examination and modification.

Source Code This is a source code note that refers you to a specific directory in the GitHub repo.

To open a solution into Visual Studio, use the File » Open » Project/Solution menu option and then
navigate to the correct *. s1n file within the correct subdirectory of the unzipped archive.

Obtaining Updates for This Book

As you read through this text, you might find an occasional grammatical or code error (although we sure
hope not). If this is the case, please accept our apologies. Being human, a glitch or two might be present,
despite our best efforts. If this is the case, you can obtain the current errata list from the book’s page on the
Apress web site at www.apress.com. As well, you can use this area to notify us of any errors you might find.

Ixv

http://dx.doi.org/10.1007/978-1-4842-3018-3_29
http://dx.doi.org/10.1007/978-1-4842-3018-3_34
http://dx.doi.org/10.1007/978-1-4842-3018-3_30
http://dx.doi.org/10.1007/978-1-4842-3018-3_32
http://www.apress.com/9781484230176
http://www.apress.com

PART |

Introducing C# and the .NET
Platform

CHAPTER 1

The Philosophy of .NET

Microsoft’s .NET platform (and the related C# programming language) were formally introduced circa

2002 and have quickly become a mainstay of modern-day software development. As mentioned in the
book’s introduction, the goal of this text is twofold. The first order of business is to provide you with a deep
and detailed examination of the syntax and semantics of C#. The second (equally important) order of
business is to illustrate the use of numerous .NET APIs, including database access with ADO.NET and the
Entity Framework (EF), user interfaces with Windows Presentation Foundation (WPF), service-oriented
applications with Windows Communication Foundation (WCF), and web service and web site development
using ASP.NET MVC. The last part of this book covers the newest member of the .NET family, .NET Core,
which is the cross-platform version of the .NET platform. As they say, the journey of a thousand miles begins
with a single step; and with this I welcome you to Chapter 1.

The point of this first chapter is to lay the conceptual groundwork for the remainder of the book. Here
you will find a high-level discussion of a number of .NET-related topics such as assemblies, the Common
Intermediate Language (CIL), and just-in-time (JIT) compilation. In addition to previewing some keywords
of the C# programming language, you will also come to understand the relationship between various aspects
of the .NET Framework, such as the Common Language Runtime (CLR), the Common Type System (CTS),
and the Common Language Specification (CLS).

This chapter also provides you with a survey of the functionality supplied by the .NET base class
libraries, sometimes abbreviated as BCLs. Here, you will get an overview of the language-agnostic and
platform-independent nature of the .NET platform. As you would hope, many of these topics are explored in
further detail throughout the remainder of this text.

An Initial Look at the .NET Platform

Before Microsoft released the C# language and .NET platform, software developers who created applications
for the Windows family of operating system frequently made use of the COM programming model. COM
(which stands for the Component Object Model) allowed individuals to build libraries of code that could be
shared across diverse programming languages. For example, a C++ programmer could build a COM library
that could be used by a Visual Basic developer. The language-independent nature of COM was certainly
useful; however, COM was plagued by a complicated infrastructure and a fragile deployment model and was
possible only on the Windows operating system.

Despite the complexity and limitations of COM, countless applications have been successful created
with this architecture. However, nowadays, the majority of applications created for the Windows family
of operating systems are not created with COM. Rather, desktop applications, web sites, OS services, and
libraries of reusable data access/business logic are created using the .NET platform.

Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/978-1-4842-3018-3_1)
contains supplementary material, which is available to authorized users.

© Andrew Troelsen and Philip Japikse 2017 3
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_1

https://doi.org/10.1007/978-1-4842-3018-3_1
http://dx.doi.org/10.1007/978-1-4842-3018-3_1
http://dx.doi.org/10.1007/978-1-4842-3018-3_1

CHAPTER 1 THE PHILOSOPHY OF .NET

Some Key Benefits of the .NET Platform

As mentioned, C# and the .NET platform were first introduced to the world in 2002 and were intended to
offer a much more powerful, more flexible, and simpler programming model than COM. As you will see
during the remainder of this book, the .NET Framework is a software platform for building systems on the
Windows family of operating systems, as well as on numerous non-Microsoft operating systems such as
macOS, i0S, Android, and various Unix/Linux distributions. To set the stage, here is a quick rundown of
some core features provided courtesy of .NET:

e Interoperability with existing code: This is (of course) a good thing. Existing COM
software can commingle (i.e., interop) with newer .NET software, and vice versa. As
of .NET 4.0 onward, interoperability has been further simplified with the addition of
the dynamic keyword (covered in Chapter 16).

e Support for numerous programming languages: NET applications can be created
using any number of programming languages (C#, Visual Basic, F#, and so on).

e A common runtime engine shared by all .NET-aware languages: One aspect of this
engine is a well-defined set of types that each .NET-aware language understands.

e Language integration: .NET supports cross-language inheritance, cross-language
exception handling, and cross-language debugging of code. For example, you can
define a base class in C# and extend this type in Visual Basic.

e A comprehensive base class library: This library provides thousands of predefined
types that allow you to build code libraries, simple terminal applications, graphical
desktop applications, and enterprise-level web sites.

e Asimplified deployment model: Unlike COM, .NET libraries are not registered into
the system registry. Furthermore, the .NET platform allows multiple versions of the
same *.d11 to exist in harmony on a single machine.

You will see each of these topics (and many more) examined in the chapters to come.

Introducing the Building Blocks of the .NET Platform
(the CLR, CTS, and CLS)

Now that you know some of the major benefits provided by .NET, let’s preview three key (and interrelated)
topics that make it all possible: the CLR, CTS, and CLS. From a programmer’s point of view, .NET can be
understood as a runtime environment and a comprehensive base class library. The runtime layer is properly
referred to as the Common Language Runtime, or CLR. The primary role of the CLR is to locate, load, and
manage .NET objects on your behalf. The CLR also takes care of a number of low-level details such as
memory management, application hosting, coordinating threads, and performing basic security checks
(among other low-level details).

Another building block of the .NET platform is the Common Type System, or CTS. The CTS specification
fully describes all possible data types and all programming constructs supported by the runtime, specifies
how these entities can interact with each other, and details how they are represented in the .NET metadata
format (more information on metadata later in this chapter; see Chapter 15 for complete details).

Understand that a given .NET-aware language might not support every feature defined by the CTS. The
Common Language Specification, or CLS, is a related specification that defines a subset of common types
and programming constructs that all .NET programming languages can agree on. Thus, if you build .NET
types that expose only CLS-compliant features, you can rest assured that all .NET-aware languages can
consume them. Conversely, if you make use of a data type or programming construct that is outside of the

4

http://dx.doi.org/10.1007/978-1-4842-3018-3_16
http://dx.doi.org/10.1007/978-1-4842-3018-3_15

CHAPTER 1 THE PHILOSOPHY OF .NET

bounds of the CLS, you cannot guarantee that every .NET programming language can interact with your
.NET code library. Thankfully, as you will see later in this chapter, it is simple to tell your C# compiler to
check all of your code for CLS compliance.

The Role of the Base Class Libraries

In addition to the CLR, CTS, and CLS specifications, the .NET platform provides a base class library that

is available to all .NET programming languages. Not only does this base class library encapsulate various
primitives such as threads, file input/output (I/0), graphical rendering systems, and interaction with various
external hardware devices, but it also provides support for a number of services required by most real-world
applications.

The base class libraries define types that can be used to build any type of software application. For
example, you can use ASP.NET to build web sites and REST services, WCF to build distributed systems, WPF
to build desktop GUI applications, and so forth. As well, the base class libraries provide types to interact with
the directory and file system on a given computer, communicate with relational databases (via ADO.NET),
and so forth. From a high level, you can visualize the relationship between the CLR, CTS, CLS, and the base
class library, as shown in Figure 1-1.

The Base Class Libraries

‘ Database Access Desktop GUI APIs Security Remoting APls

‘ Threading File 1/O ‘ Web APIs (etal.)

The Common Language Runtime

Common Type System

Common Language Specification

Figure 1-1. The CLR, CTS, CLS, and base class library relationship

What C# Brings to the Table

C# is a programming language whose core syntax looks very similar to the syntax of Java. However, calling
C# aJava clone is inaccurate. In reality, both C# and Java are members of the C family of programming
languages (e.g., C, Objective C, C++) and, therefore, share a similar syntax.

The truth of the matter is that many of C#’s syntactic constructs are modeled after various aspects of
Visual Basic (VB) and C++. For example, like VB, C# supports the notion of class properties (as opposed
to traditional getter and setter methods) and optional parameters. Like C++, C# allows you to overload
operators, as well as create structures, enumerations, and callback functions (via delegates).

Moreover, as you work through this text, you will quickly see that C# supports a number of features
traditionally found in various functional languages (e.g., LISP or Haskell) such as lambda expressions
and anonymous types. Furthermore, with the advent of Language Integrated Query (LINQ), C# supports a

CHAPTER 1 THE PHILOSOPHY OF .NET

number of constructs that make it quite unique in the programming landscape. Nevertheless, the bulk of C#
is indeed influenced by C-based languages.

Because C# is a hybrid of numerous languages, the result is a product that is as syntactically clean
(if not cleaner) as Java, is about as simple as VB, and provides just about as much power and flexibility as C++.
Here is a partial list of core C# features that are found in all versions of the language:

e No pointers required! C# programs typically have no need for direct pointer
manipulation (although you are free to drop down to that level if absolutely
necessary, as shown in Chapter 11).

e Automatic memory management through garbage collection. Given this, C# does not
support a delete keyword.

e Formal syntactic constructs for classes, interfaces, structures, enumerations, and
delegates.

e The C++-like ability to overload operators for a custom type, without the complexity
(e.g., making sure to “return *this to allow chaining” is not your problem).

e Support for attribute-based programming. This brand of development allows you
to annotate types and their members to further qualify their behavior. For example,
if you mark a method with the [Obsolete] attribute, programmers will see your
custom warning message print out if they attempt to make use of the decorated
member.

With the release of .NET 2.0 (circa 2005), the C# programming language was updated to support
numerous new bells and whistles, most notability the following:

e The ability to build generic types and generic members. Using generics, you are able
to build efficient and type-safe code that defines numerous placeholders specified at
the time you interact with the generic item.

e Support for anonymous methods, which allow you to supply an inline function
anywhere a delegate type is required.

¢ The ability to define a single type across multiple code files (or, if necessary, as an
in-memory representation) using the partial keyword.

.NET 3.5 (released circa 2008) added even more functionality to the C# programming language,
including the following features:

e Support for strongly typed queries (e.g., LINQ) used to interact with various forms of
data. You will first encounter LINQ in Chapter 12.

e Support for anonymous types that allow you to model the structure of a type (rather
than its behavior) on the fly in code.

e The ability to extend the functionality of an existing type (without subclassing) using
extension methods.

e Inclusion of alambda operator (=>), which even further simplifies working with .NET
delegate types.

¢ Anew objectinitialization syntax, which allows you to set property values at the time
of object creation.

http://dx.doi.org/10.1007/978-1-4842-3018-3_11
http://dx.doi.org/10.1007/978-1-4842-3018-3_12

CHAPTER 1 THE PHILOSOPHY OF .NET

.NET 4.0 (released in 2010) updated C# yet again with a handful of features.
e Support for optional method parameters, as well as named method arguments.

e Support for dynamic lookup of members at runtime via the dynamic keyword. As you
will see in Chapter 18, this provides a unified approach to invoking members on the
fly, regardless of which framework the member implemented.

e Working with generic types is much more intuitive, given that you can easily map
generic data to and from general System.0Object collections via covariance and
contravariance.

With the release of .NET 4.5, C# received a pair of new keywords (async and await), which greatly
simplify multithreaded and asynchronous programming. If you have worked with previous versions of C#,
you might recall that calling methods via secondary threads required a fair amount of cryptic code and
the use of various .NET namespaces. Given that C# now supports language keywords that handle this
complexity for you, the process of calling methods asynchronously is almost as easy as calling a method in a
synchronous manner. Chapter 19 will cover these topics in detail.

C# 6 was released with .NET 4.6 and introduced a number of minor features that help streamline your
codebase. Here are is a quick rundown of some of the features found in C# 6:

e Inline initialization for automatic properties as well as support for read-only
automatic properties

e Single-line method implementations using the C# lambda operator

e Support of static imports to provide direct access to static members within a
namespace

¢ Anull conditional operator, which helps check for null parameters in a method
implementation

e Anew string-formatting syntax termed string interpolation

e The ability to filter exceptions using the new when keyword

e Usingawaitin catchand finally blocks

e nameOf expressions to return a string representation of symbols
e Indexinitializers

e Improved overload resolution

This brings me to the current major release of C#, which was released with .NET 4.7 in March 2017.
Similar to C# 6, version 7 introduces additional features for streamlining your codebase, and it adds some
more significant features (such as tuples and ref locals and returns) that developers have been asking to
have included in the language specification for quite some time. These will be detailed throughout the
remainder of this book; however, here is a quick rundown of the new features in C# 7:

e Declaring out variables as inline arguments

e Nesting functions inside other functions to limit scope and visibility
e Additional expression-bodied members

e Generalized async return types

e New tokens to improve readability for numeric constants

e Lightweight unnamed types (called tuples) that contain multiple fields

http://dx.doi.org/10.1007/978-1-4842-3018-3_18
http://dx.doi.org/10.1007/978-1-4842-3018-3_19

CHAPTER 1 THE PHILOSOPHY OF .NET

e Updates to logic flow using type matching in addition to value checking
(pattern matching)

e Returning a reference to a value, instead of just the value itself (ref locals and
returns)

e The introduction of lightweight throwaway varials (called discards)

e Throw expressions, allowing the throw to be executed in more places, such as
conditional expressions, lambdas, and others

Not long after C# 7 was released, C# 7.1 was released in August 2017. This minor release added the
following features:

e The ability to have a program’s main method be async.
e Anewliteral, default, that allows for initialization of any type.

e Correction of an issue with pattern matching that prevented using generics with the
new pattern matching feature.

¢ Like anonymous methods, tuple names can be inferred from the projection that
creates them.

Managed vs. Unmanaged Code

It is important to note that the C# language can be used only to build software that is hosted under the NET
runtime (you could never use C# to build a native COM server or an unmanaged C/C++-style application).
Officially speaking, the term used to describe the code targeting the .NET runtime is managed code. The
binary unit that contains the managed code is termed an assembly (more details on assemblies in just a bit).
Conversely, code that cannot be directly hosted by the .NET runtime is termed unmanaged code.

As mentioned previously (and detailed later in this chapter and the next), the .NET platform can run
on a variety of operating systems. Thus, it is quite possible to build a C# application on a Windows machine
using Visual Studio and run the program on a macOS machine using the .NET Core runtime. As well, you
could build a C# application on Linux using Xamarin Studio and run the program on Windows, macOS and
so on. With the most recent release of Visual Studio 2017, you can also build .NET Core applications on a
Mac to be run on Windows, macOS or Linux. To be sure, the notion of a managed environment makes it
possible to build, deploy, and run .NET programs on a wide variety of target machines.

Additional .NET-Aware Programming Languages

Understand that C# is not the only language that can be used to build .NET applications. Out of the box,
Visual Studio provides you with five managed languages, specifically, C#, Visual Basic, C++/CLI, JavaScript,
and F#.

Note F#is a .NET language based on the syntax of functional languages. While F# can be used as a
purely functional language, it also has support for 00P constructs and the .NET base class libraries. If you are
interested in learning more about this managed language, navigate to the official F# home page at
http://msdn.microsoft.com/fsharp.

http://msdn.microsoft.com/fsharp

CHAPTER 1 THE PHILOSOPHY OF .NET

In addition to the managed languages provided by Microsoft, there are .NET compilers for Smalltalk,
Ruby, Python, COBOL, and Pascal (to name a few). Although this book focuses almost exclusively on C#, you
might want to consult the following Wikipedia page, which lists a large number of programming languages
that target the .NET Framework:

https://en.wikipedia.org/wiki/List_of CLI_languages

While I assume you are primarily interested in building .NET programs using the syntax of C#,
I encourage you to visit this site, as you are sure to find many .NET languages worth investigating at your
leisure (LISP.NET, anyone?).

Life in a Multilanguage World

As developers first come to understand the language-agnostic nature of .NET, numerous questions arise.
The most prevalent of these questions would have to be, “If all .NET languages compile down to managed code,
why do we need more than one language/compiler?”

There are a number of ways to answer this question. First, we programmers are a very particular lot
when it comes to our choice of programming language. Some of us prefer languages full of semicolons
and curly brackets with as few language keywords as possible. Others enjoy a language that offers more
human-readable syntactic tokens (such as Visual Basic). Still others might want to leverage their mainframe
skills while moving to the .NET platform (via the COBOL .NET compiler).

Now, be honest. If Microsoft were to build a single “official” .NET language derived from the BASIC
family of languages, can you really say all programmers would be happy with this choice? Oy, if the only
“official” .NET language was based on Fortran syntax, imagine all the folks out there who would ignore
.NET altogether. Because the .NET runtime couldn’t care less which language was used to build a block of
managed code, .NET programmers can stay true to their syntactic preferences and share the compiled code
among teammates, departments, and external organizations (regardless of which .NET language others
choose to use).

Another excellent by-product of integrating various .NET languages into a single, unified software
solution is the simple fact that all programming languages have their own sets of strengths and weaknesses.
For example, some programming languages offer excellent intrinsic support for advanced mathematical
processing. Others offer superior support for financial calculations, logical calculations, interaction with
mainframe computers, and so forth. When you take the strengths of a particular programming language and
then incorporate the benefits provided by the .NET platform, everybody wins.

Of course, in reality the chances are quite good that you will spend much of your time building software
using your .NET language of choice. However, once you master the syntax of one .NET language, it is easy
to learn another. This is also quite beneficial, especially to the software consultants of the world. If your
language of choice happens to be C# but you are placed at a client site that has committed to Visual Basic,
you are still able to leverage the functionality of the NET Framework, and you should be able to understand
the overall structure of the codebase with minimal fuss and bother.

An QOverview of .NET Assemblies

Regardless of which .NET language you choose to program with, understand that despite .NET binaries
taking the same file extension as unmanaged Windows binaries (*.d11 or *.exe), they have absolutely no
internal similarities. Specifically, .NET binaries do not contain platform-specific instructions but rather
platform-agnostic Intermediate Language (IL) and type metadata. Figure 1-2 shows the big picture of the
story thus far.

https://en.wikipedia.org/wiki/List_of_CLI_languages

CHAPTER 1 THE PHILOSOPHY OF .NET

C#
Source Code
I

C# Compiler

Perl .NET
Source Code
I

Perl .NET Compiler
IL
and
Metadata
(*.dll or *.exe)

COBOL .NET
Source Code
I

COBOL .NET Compiler {

1

Ce+/CLI
Source Code
I

C++/CLI Compiler

Figure 1-2. All NET-aware compilers emit IL instructions and metadata

Note IL is also known as Microsoft Intermediate Language (MSIL) or alternatively as the Common
Intermediate Language (CIL). Thus, as you read the .NET literature, understand that IL, MSIL, and CIL are all
describing essentially the same concept. In this book, | will use the abbreviation CIL to refer to this low-level
instruction set.

When a *.d11 or *.exe has been created using a .NET-aware compiler, the binary blob is termed an
assembly. You will examine numerous details of .NET assemblies in Chapter 14. However, to facilitate the
current discussion, you do need to understand some basic properties of this new file format.

As mentioned, an assembly contains CIL code, which is conceptually similar to Java bytecode in that it
is not compiled to platform-specific instructions until absolutely necessary. Typically, “absolutely necessary’
is the point at which a block of CIL instructions (such as a method implementation) is referenced for use by
the .NET runtime.

In addition to CIL instructions, assemblies also contain metadata that describes in vivid detail the
characteristics of every “type” within the binary. For example, if you have a class named SportsCar, the
type metadata describes details such as SportsCar’s base class, specifies which interfaces are implemented
by SportsCar (if any), and gives full descriptions of each member supported by the SportsCar type. .NET
metadata is always present within an assembly and is automatically generated by a .NET-aware language
compiler.

Finally, in addition to CIL and type metadata, assemblies themselves are also described using metadata,
which is officially termed a manifest. The manifest contains information about the current version of the
assembly, culture information (used for localizing string and image resources), and a list of all externally
referenced assemblies that are required for proper execution. You'll examine various tools that can be
used to examine an assembly’s types, metadata, and manifest information over the course of the next few
chapters.

J

The Role of the Common Intermediate Language

Let’s examine CIL code, type metadata, and the assembly manifest in a bit more detail. CIL is a language
that sits above any particular platform-specific instruction set. For example, the following C# code models a
trivial calculator. Don’t concern yourself with the exact syntax for now, but do notice the format of the Add()
method in the Calc class.

10

http://dx.doi.org/10.1007/978-1-4842-3018-3_14

CHAPTER 1 THE PHILOSOPHY OF .NET

// Calc.cs

using System;

namespace CalculatorExample

{
// This class contains the app's entry point.
class Program

{

static void Main()

{
Calc ¢ = new Calc();
int ans = c.Add(10, 84);
Console.WriteLine("10 + 84 is {0}.", ans);
// Wait for user to press the Enter key before shutting down.
Console.ReadlLine();

}

}

// The C# calculator.
class Calc
{
public int Add(int x, int y)
{ return x +vy; }
}
}

After you compile this code file using the C# compiler (csc.exe), you end up with a single-file *. exe
assembly that contains a manifest, CIL instructions, and metadata describing each aspect of the Calc and
Program classes.

Note Chapter 2 examines how to use graphical integrated development environments (IDEs), such as
Visual Studio Community, to compile your code files.

For example, if you were to open this assembly using ildasm. exe (examined a little later in this chapter),
you would find that the Add() method is represented using CIL such as the following:

.method public hidebysig instance int32 Add(int32 x,
int32 y) cil managed
{

// Code size 9 (0x9)
.maxstack 2
.locals init (int32 V_0)
IL_0000: nop
IL 0o01: ldarg.1
IL_0002: ldarg.2
IL_0003: add
IL_0004: stloc.0
IL_0005: br.s IL_0007
IL 0007: ldloc.0
IL 0008: ret

} // end of method Calc::Add

11

http://dx.doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 1 THE PHILOSOPHY OF .NET

Don’t worry if you are unable to make heads or tails of the resulting CIL for this method—Chapter 18
will describe the basics of the CIL programming language. The point to concentrate on is that the C#
compiler emits CIL, not platform-specific instructions.

Now, recall that this is true of all . NET-aware compilers. To illustrate, assume you created this same
application using Visual Basic, rather than C#.

' Calc.vb
Imports System

Namespace CalculatorExample
' A VB "Module" is a class that contains only
' static members.
Module Program
Sub Main()
Dim c As New Calc
Dim ans As Integer = c.Add(10, 84)
Console.WritelLine("10 + 84 is {0}.", ans)
Console.ReadlLine()
End Sub
End Module

Class Calc
Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x +y
End Function
End Class
End Namespace

If you examine the CIL for the Add () method, you find similar instructions (slightly tweaked by the
Visual Basic compiler, vbc. exe).

.method public instance int32 Add(int32 x,
int32 y) cil managed
{
// Code size 8 (0x8)
.maxstack 2
.locals init (int32 V_0)
IL_0000: ldarg.1
IL_0001: ldarg.2
IL_0002: add.ovf
IL_0003: stloc.0
IL 0004: br.s IL_0006
IL 0006: ldloc.0
IL_0007: ret
} // end of method Calc::Add

Source Code You can find the Calc.cs and Calc.vb code files in the Chapter 1 subdirectory.

12

http://dx.doi.org/10.1007/978-1-4842-3018-3_18
http://dx.doi.org/10.1007/978-1-4842-3018-3_1

CHAPTER 1 THE PHILOSOPHY OF .NET

Benefits of CIL

At this point, you might be wondering exactly what is gained by compiling source code into CIL rather than
directly to a specific instruction set. One benefit is language integration. As you have already seen, each
.NET-aware compiler produces nearly identical CIL instructions. Therefore, all languages are able to interact
within a well-defined binary arena.

Furthermore, given that CIL is platform-agnostic, the NET Framework itself is platform-agnostic,
providing the same benefits Java developers have grown accustomed to (e.g., a single codebase running on
numerous operating systems). In fact, there is an international standard for the C# language, and a large
subset of the .NET platform and implementations already exists for many non-Windows operating systems
(more details at the conclusion of this chapter).

Compiling CIL to Platform-Specific Instructions

Because assemblies contain CIL instructions rather than platform-specific instructions, CIL code must be
compiled on the fly before use. The entity that compiles CIL code into meaningful CPU instructions is a JIT
compiler, which sometimes goes by the friendly name of jitter. The .NET runtime environment leverages a
JIT compiler for each CPU targeting the runtime, each optimized for the underlying platform.

For example, if you are building a .NET application to be deployed to a handheld device (such as a
Windows Phone device), the corresponding jitter is well equipped to run within a low-memory
environment. On the other hand, if you are deploying your assembly to a back-end company server
(where memory is seldom an issue), the jitter will be optimized to function in a high-memory environment.
In this way, developers can write a single body of code that can be efficiently JIT compiled and executed on
machines with different architectures.

Furthermore, as a given jitter compiles CIL instructions into corresponding machine code, it will cache
the results in memory in a manner suited to the target operating system. In this way, if a call is made to a
method named PrintDocument (), the CIL instructions are compiled into platform-specific instructions on
the first invocation and retained in memory for later use. Therefore, the next time PrintDocument () is called,
there is no need to recompile the CIL.

Note Itis also possible to perform a “pre-JIT” of an assembly when installing your application using the
ngen.exe command-line tool that ships with the .NET Framework SDK. Doing so can improve startup time for
graphically intensive applications.

The Role of .NET Type Metadata

In addition to CIL instructions, a .NET assembly contains full, complete, and accurate metadata, which
describes every type (e.g., class, structure, enumeration) defined in the binary, as well as the members of each
type (e.g., properties, methods, events). Thankfully, it is always the job of the compiler (not the programmer)
to emit the latest and greatest type metadata. Because .NET metadata is so wickedly meticulous, assemblies
are completely self-describing entities.

To illustrate the format of .NET type metadata, let’s take a look at the metadata that has been generated
for the Add () method of the C# Calc class you examined previously (the metadata generated for the Visual
Basic version of the Add() method is similar; again, more on the use of ildasm.exe in just a bit).

13

CHAPTER 1 THE PHILOSOPHY OF .NET

TypeDef #2 (02000003)
TypDefName: CalculatorExample.Calc (02000003)
Flags : [NotPublic] [AutoLayout] [Class]
[AnsiClass] [BeforeFieldInit] (00100001)
Extends : 01000001 [TypeRef] System.Object
Method #1 (06000003)
MethodName: Add (06000003)
Flags : [Public] [HideBySig] [ReuseSlot] (00000086)
RVA : 0x00002090
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: I4
2 Arguments
Argument #1: 1I4
Argument #2: 1I4
2 Parameters
(1) ParamToken : (08000001) Name : x flags: [none] (00000000)
(2) ParamToken : (08000002) Name : y flags: [none] (00000000)

Metadata is used by numerous aspects of the .NET runtime environment, as well as by various development
tools. For example, the IntelliSense feature provided by tools such as Visual Studio is made possible by reading
an assembly’s metadata at design time. Metadata is also used by various object- browsing utilities, debugging
tools, and the C# compiler itself. To be sure, metadata is the backbone of numerous .NET technologies including
WCE reflection, late binding, and object serialization. Chapter 15 will formalize the role of NET metadata.

The Role of the Assembly Manifest

Last but not least, remember that a .NET assembly also contains metadata that describes the assembly
itself (technically termed a manifest). Among other details, the manifest documents all external assemblies
required by the current assembly to function correctly, the assembly’s version number, copyright
information, and so forth. Like type metadata, it is always the job of the compiler to generate the assembly’s
manifest. Here are some relevant details of the manifest generated when compiling the Calc.cs code file
shown earlier in this chapter (assume you instructed the compiler to name your assembly Calc.exe):

.assembly extern mscorlib

{
.publickeytoken = (B7 7A 5C 56 19 34 EO 89)
.ver 4:0:0:0

}

.assembly Calc

{
.hash algorithm 0x00008004
.ver 0:0:0:0

}

.module Calc.exe

.imagebase 0x00400000

.subsystem 0x00000003

.file alignment 0x00000200

.corflags 0x00000001

14

http://dx.doi.org/10.1007/978-1-4842-3018-3_15

CHAPTER 1 THE PHILOSOPHY OF .NET

In a nutshell, this manifest documents the set of external assemblies required by Calc.exe (via the
.assembly extern directive) as well as various characteristics of the assembly itself (e.g., version number,
module name). Chapter 14 will examine the usefulness of manifest data in much more detail.

Understanding the Common Type System

A given assembly may contain any number of distinct types. In the world of .NET, type is simply a general term
used to refer to a member from the set {class, interface, structure, enumeration, delegate}. When you build
solutions using a .NET-aware language, you will most likely interact with many of these types. For example,
your assembly might define a single class that implements some number of interfaces. Perhaps one of the
interface methods takes an enumeration type as an input parameter and returns a structure to the caller.

Recall that the CTS is a formal specification that documents how types must be defined in order to be
hosted by the CLR. Typically, the only individuals who are deeply concerned with the inner workings of the
CTS are those building tools and/or compilers that target the .NET platform. It is important, however, for all
.NET programmers to learn about how to work with the five types defined by the CTS in their language of
choice. The following is a brief overview.

CTS Class Types

Every .NET-aware language supports, at the least, the notion of a class type, which is the cornerstone of
object-oriented programming (OOP). A class may be composed of any number of members (such as
constructors, properties, methods, and events) and data points (fields). In C#, classes are declared using the
class keyword, like so:

/1 A C# class type with 1 method.
class Calc

{
public int Add(int x, int y)

{

return x + y;

}
}

Chapter 5 will begin your formal examination of building class types with C#; however, Table 1-1
documents a number of characteristics pertaining to class types.

Table 1-1. CTS Class Characteristics

Class Characteristic Meaning in Life

Is the class sealed? Sealed classes cannot function as a base class to other classes.

Does the class implement An interface is a collection of abstract members that provides a contract
any interfaces? between the object and object user. The CTS allows a class to implement any
number of interfaces.

Is the class abstract or Abstract classes cannot be directly instantiated but are intended to define
concrete? common behaviors for derived types. Concrete classes can be instantiated
directly.

What is the visibility of Each class must be configured with a visibility keyword such as public or
this class? internal. Basically, this controls whether the class may be used by external
assemblies or only from within the defining assembly.

15

http://dx.doi.org/10.1007/978-1-4842-3018-3_14
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 1 THE PHILOSOPHY OF .NET

CTS Interface Types

Interfaces are nothing more than a named collection of abstract member definitions, which may be
supported (i.e., implemented) by a given class or structure. In C#, interface types are defined using the
interface keyword. By convention, all .NET interfaces begin with a capital letter I, as in the following
example:

// A C# interface type is usually

// declared as public, to allow types in other
// assemblies to implement their behavior.
public interface IDraw

{

void Draw();

}

On their own, interfaces are of little use. However, when a class or structure implements a given
interface in its unique way, you are able to request access to the supplied functionality using an interface
reference in a polymorphic manner. Interface-based programming will be fully explored in Chapter 8.

CTS Structure Types

The concept of a structure is also formalized under the CTS. If you have a C background, you should be
pleased to know that these user-defined types (UDTs) have survived in the world of .NET (although they
behave a bit differently under the hood). Simply put, a structure can be thought of as a lightweight class type
having value-based semantics. For more details on the subtleties of structures, see Chapter 4. Typically,
structures are best suited for modeling geometric and mathematical data and are created in C# using the
struct keyword, as follows:

// A C# structure type.

struct Point

{
// Structures can contain fields.
public int xPos, yPos;

// Structures can contain parameterized constructors.
public Point(int x, int y)
{ xPos = x; yPos = y;}

// Structures may define methods.
public void PrintPosition()

{

}
}

Console.WritelLine(" ({0}, {1})", xPos, yPos);

16

http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 1 THE PHILOSOPHY OF .NET

CTS Enumeration Types

Enumerations are a handy programming construct that allow you to group name-value pairs. For example,
assume you are creating a video game application that allows the player to select one of three character
categories (Wizard, Fighter, or Thief). Rather than keeping track of simple numerical values to represent
each possibility, you could build a strongly typed enumeration using the enum keyword.

// A C# enumeration type.
enum CharacterType
{
Wizard = 100,
Fighter = 200,
Thief = 300
}

By default, the storage used to hold each item is a 32-bit integer; however, it is possible to alter this
storage slot if need be (e.g., when programming for a low-memory device such as a mobile device). Also,
the CTS demands that enumerated types derive from a common base class, System.Enum. As you will see in
Chapter 4, this base class defines a number of interesting members that allow you to extract, manipulate,
and transform the underlying name-value pairs programmatically.

CTS Delegate Types

Delegates are the .NET equivalent of a type-safe, C-style function pointer. The key difference is that a .NET
delegate is a class that derives from System.MulticastDelegate, rather than a simple pointer to a raw
memory address. In C#, delegates are declared using the delegate keyword.

// This C# delegate type can "point to" any method
// xeturning an int and taking two ints as input.
delegate int BinaryOp(int x, int y);

Delegates are critical when you want to provide a way for one object to forward a call to another object
and provide the foundation for the .NET event architecture. As you will see in Chapters 10 and 19, delegates
have intrinsic support for multicasting (i.e., forwarding a request to multiple recipients) and asynchronous
method invocations (i.e., invoking the method on a secondary thread).

CTS Type Members

Now that you have previewed each of the types formalized by the CTS, realize that most types take any
number of members. Formally speaking, a type member is constrained by the set {constructor, finalizer, static
constructor, nested type, operator, method, property, indexer, field, read-only field, constant, event}.

The CTS defines various adornments that may be associated with a given member. For example, each
member has a given visibility trait (e.g., public, private, protected). Some members may be declared as abstract
(to enforce a polymorphic behavior on derived types) as well as virtual (to define a canned, but overridable,
implementation). Also, most members may be configured as static (bound at the class level) or instance (bound
at the object level). The creation of type members is examined over the course of the next several chapters.

Note As described in Chapter 9, the C# language also supports the creation of generic types and generic
members.

17

http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_10
http://dx.doi.org/10.1007/978-1-4842-3018-3_19
http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 1 THE PHILOSOPHY OF .NET

Intrinsic CTS Data Types

The final aspect of the CTS to be aware of for the time being is that it establishes a well-defined set of
fundamental data types. Although a given language typically has a unique keyword used to declare a
fundamental data type, all .NET language keywords ultimately resolve to the same CTS type defined in
an assembly named mscorlib.d1l. Consider Table 1-2, which documents how key CTS data types are
expressed in various .NET languages.

Table 1-2. The Intrinsic CTS Data Types

CTS Data Type VB Keyword C# Keyword C++/CLI Keyword
System.Byte Byte byte unsigned char
System.SByte SByte sbyte signed char
System.Int16 Short short short
System.Int32 Integer int int or long
System.Int64 Long long _ int64
System.UInt16 UShort ushort unsigned short
System.UInt32 UInteger uint unsigned int or
unsigned long
System.UInt64 ULong ulong unsigned _ int64
System.Single Single float float
System.Double Double double double
System.Object Object object object”
System.Char Char char wchar_t
System.String String string String”
System.Decimal Decimal decimal Decimal
System.Boolean Boolean bool bool

Given that the unique keywords of a managed language are simply shorthand notations for a real type
in the System namespace, you no longer have to worry about overflow/underflow conditions for numerical
data or how strings and Booleans are internally represented across different languages. Consider the
following code snippets, which define 32-bit numerical variables in C# and Visual Basic, using language
keywords as well as the formal CTS data type:

// Define some "ints" in Cif.
int i = 0;
System.Int32 j = 0;

' Define some "ints" in VUB.

Dim i As Integer = 0
Dim j As System.Int32 = 0

18

CHAPTER 1 THE PHILOSOPHY OF .NET

Understanding the Common Language Specification

Asyou are aware, different languages express the same programming constructs in unique, language-
specific terms. For example, in C# you denote string concatenation using the plus operator (+), while

in VB you typically make use of the ampersand (&). Even when two distinct languages express the same
programmatic idiom (e.g., a function with no return value), the chances are good that the syntax will appear
quite different on the surface.

// C#t method returning nothing.
public void MyMethod()
{

// Some interesting code...

}

' VB method returning nothing.
Public Sub MyMethod()

' Some interesting code...
End Sub

Asyou have already seen, these minor syntactic variations are inconsequential in the eyes of the
.NET runtime, given that the respective compilers (csc.exe or vbc.exe, in this case) emit a similar set of
CIL instructions. However, languages can also differ with regard to their overall level of functionality. For
example, a .NET language might or might not have a keyword to represent unsigned data and might or might
not support pointer types. Given these possible variations, it would be ideal to have a baseline to which all
.NET-aware languages are expected to conform.

The CLS is a set of rules that describe in vivid detail the minimal and complete set of features a given
.NET-aware compiler must support to produce code that can be hosted by the CLR, while at the same time
be accessed in a uniform manner by all languages that target the .NET platform. In many ways, the CLS can
be viewed as a subset of the full functionality defined by the CTS.

The CLS is ultimately a set of rules that compiler builders must conform to if they intend their products
to function seamlessly within the .NET universe. Each rule is assigned a simple name (e.g., CLS Rule 6) and
describes how this rule affects those who build the compilers as well as those who (in some way) interact
with them. The creme de la créme of the CLS is Rule 1.

Rule 1: CLS rules apply only to those parts of a type that are exposed outside the
defining assembly.

Given this rule, you can (correctly) infer that the remaining rules of the CLS do not apply to the logic
used to build the inner workings of a .NET type. The only aspects of a type that must conform to the CLS
are the member definitions themselves (i.e., naming conventions, parameters, and return types). The
implementation logic for a member may use any number of non-CLS techniques, as the outside world won’t
know the difference.

To illustrate, the following C# Add() method is not CLS compliant, as the parameters and return values
make use of unsigned data (which is not a requirement of the CLS):

class Calc

{
// Exposed unsigned data is not CLS compliant!
public ulong Add(ulong x, ulong y)

{

return x + y;

}
}

19

CHAPTER 1 THE PHILOSOPHY OF .NET

However, if you were to only make use of unsigned data internally in a method, as follows:

class Calc
{
public int Add(int x, int y)
{
// As this ulong variable is only used internally,
// we are still CLS compliant.
ulong temp = 0;

return x + y;
}
}

you have still conformed to the rules of the CLS and can rest assured that all .NET languages are able to
invoke the Add () method.

Of course, in addition to Rule 1, the CLS defines numerous other rules. For example, the CLS describes
how a given language must represent text strings, how enumerations should be represented internally
(the base type used for storage), how to define static members, and so forth. Luckily, you don’t have
to commit these rules to memory to be a proficient .NET developer. Again, by and large, an intimate
understanding of the CTS and CLS specifications is typically of interest only to tool/compiler builders.

Ensuring CLS Compliance

As you will see over the course of this book, C# does define a number of programming constructs that are not
CLS compliant. The good news, however, is that you can instruct the C# compiler to check your code for CLS
compliance using a single .NET attribute.

/1 Tell the C# compiler to check for CLS compliance.
[assembly: CLSCompliant(true)]

Chapter 15 dives into the details of attribute-based programming. Until then, simply understand that the
[CLSCompliant] attribute will instruct the C# compiler to check every line of code against the rules of the CLS.
If any CLS violations are discovered, you receive a compiler error and a description of the offending code.

Understanding the Common Language Runtime

In addition to the CTS and CLS specifications, the final three-letter abbreviation (TLA) to contend with at
the moment is the CLR. Programmatically speaking, the term runtime can be understood as a collection
of services that are required to execute a given compiled unit of code. For example, when Java developers
deploy software to a new computer, they need to ensure the Java virtual machine (JVM) has been installed
on the machine in order to run their software.

The .NET platform offers yet another runtime system. The key difference between the .NET runtime and
the various other runtimes I just mentioned is that the .NET runtime provides a single, well-defined runtime
layer that is shared by all languages and platforms that are .NET-aware.

The crux of the CLR is physically represented by a library named mscoree.d11 (aka the Common Object
Runtime Execution Engine). When an assembly is referenced for use, mscoree.d11 is loaded automatically,
which in turn loads the required assembly into memory. The runtime engine is responsible for a number of
tasks. First, it is the agent in charge of resolving the location of an assembly and finding the requested type

20

http://dx.doi.org/10.1007/978-1-4842-3018-3_15

CHAPTER 1 THE PHILOSOPHY OF .NET

within the binary by reading the contained metadata. The CLR then lays out the type in memory,
compiles the associated CIL into platform-specific instructions, performs any necessary security checks,
and then executes the code in question.

In addition to loading your custom assemblies and creating your custom types, the CLR will also
interact with the types contained within the .NET base class libraries when required. Although the entire
base class library has been broken into a number of discrete assemblies, the key assembly ismscorlib.d11,
which contains a large number of core types that encapsulate a wide variety of common programming tasks,
as well as the core data types used by all .NET languages. When you build .NET solutions, you automatically
have access to this particular assembly.

Figure 1-3 illustrates the high-level workflow that takes place between your source code (which is
making use of base class library types), a given .NET compiler, and the .NET execution engine.

N Some .NET
Your .NET " Compiler
Source Code
from Some v
.lI\I-ET-Aware * dll or*.exe
anguage Assembly
7 (CIL, Metadata, and Manifest)
v
.NET Execution Engine
(mscoree.dIl)
Base Class > Class Loader
Libraries
v
(mscorlib.dll .
and So Forth) Jitter
| P '
Platform-
Specific
Instructions
Execute the
Member

Figure 1-3. mscoree.dll in action

21

CHAPTER 1 THE PHILOSOPHY OF .NET

The Assembly/Namespace/Type Distinction

Each of us understands the importance of code libraries. The point of framework libraries is to give
developers a well-defined set of existing code to leverage in their applications. However, the C# language
does not come with a language-specific code library. Rather, C# developers leverage the language- neutral
.NET libraries. To keep all the types within the base class libraries well organized, the .NET platform makes
extensive use of the namespace concept.

A namespace is a grouping of semantically related types contained in an assembly or possibly spread
across multiple related assemblies. For example, the System.I0 namespace contains file I/O-related types,
the System.Data namespace defines basic database types, and so on. It is important to point out that a single
assembly (such asmscorlib.dll) can contain any number of namespaces, each of which can contain any
number of types.

To clarify, Figure 1-4 shows the Visual Studio Object Browser utility (which can be found under the View
menu). This tool allows you to examine the assemblies referenced by your current project, the namespaces
within a particular assembly, the types within a given namespace, and the members of a specific type. Note
that the mscor1ib.dl1 assembly contains many different namespaces (such as System. I0), each with its
own semantically related types (e.g., BinaryReader).

EXTPIN oviect srovser = |

Browse: .NET Framework 4.6 () | £ ~
<Search> - P
4 =& mscorlib - @ BinaryReader(System.|O.5tream) -
b {} Microsoft.Win32 @ BinaryReader(System.|0.Stream, System.Text.Encoding)
b {} Microsoft.Win32.5afeHandles @ BinaryReader(System.|O.Stream, System.Text.Encoding, bool)
b {} System @ Close()
b {} System.Collections @ Dispose()
b {} System.Collections.Concurrent @, Dispose(bool)
b {} System.Collections.Generic @, FillBuffer(int)
b {} System.Collections.ObjectModel @ PeekChar()
b {} System.Configuration.Assemblies Read(
b {} System.Deployment.Internal @ Read(byte[], int, int)
b {} System.Diagnostics @ Read(char[], int, int)
b {} System.Diagnostics.CodeAnalysis ®, Read7BitEncodedint()
b ()} System.Diagnostics.Contracts @ ReadBoolean()
b {} System.Diagnostics.Contracts.Internal @ ReadByte()
b {} System.Diagnostics.SymbolStore @ ReadBytes(int)
b {} System.Diagnostics.Tracing @ ReadChar()
p {} System.Globalization @ ReadChars(int)
4 (} SystemlO @ ReadDecimal()
PIR 3 BinaryReader @ ReadDouble()
: E::;I:E::p = public class BinaryReader
b s BinaryWriter Member of System.lO
b :, BfliferedStream Attributes:
A Df'mwy [System.Runtime.InteropServices.ComVisibleAttribute(true)]
. b %+ Directorvinfo , X

Figure 1-4. A single assembly can have any number of namespaces, and namespaces can have any number

of types

22

CHAPTER 1 THE PHILOSOPHY OF .NET

The key difference between this approach and a language-specific library is that any language targeting
the .NET runtime uses the same namespaces and same types. For example, the following three programs all
illustrate the ubiquitous Hello World application, written in C#, VB, and C++/CLI:

// Hello World in Ci.
using System;

public class MyApp
{
static void Main()
{
Console.WriteLine("Hi from C#");
}
}

' Hello World in VB.
Imports System
Public Module MyApp
Sub Main()
Console.WriteLine("Hi from VB")
End Sub
End Module

// Hello Woxld in C++/CLI.
#include "stdafx.h"
using namespace System;

int main(array<System::String ~> “args)
{
Console: :WriteLine(L"Hi from C++/CLI");
return O;

}

Notice that each language is using the Console class defined in the System namespace. Beyond some
obvious syntactic variations, these three applications look and feel very much alike, both physically and
logically.

Clearly, once you are comfortable with your .NET programming language of choice, your next goal as a
.NET developer is to get to know the wealth of types defined in the (numerous) .NET namespaces. The most
fundamental namespace to get your head around initially is named System. This namespace provides a core
body of types that you will need to leverage time and again as a .NET developer. In fact, you cannot build any
sort of functional C# application without at least making a reference to the System namespace, as the core
data types (e.g., System.Int32, System.String) are defined here. Table 1-3 offers a rundown of some
(but certainly not all) of the .NET namespaces grouped by related functionality.

23

CHAPTER 1

THE PHILOSOPHY OF .NET

Table 1-3. A Sampling of .NET Namespaces

.NET Namespace Meaning in Life

System Within System, you find numerous useful types dealing with
intrinsic data, mathematical computations, random number
generation, environment variables, and garbage collection, as well
as a number of commonly used exceptions and attributes.

System.Collections These namespaces define a number of stock container types, as

System.Collections.Generic well as base types and interfaces that allow you to build customized
collections.

System.Data These namespaces are used for interacting with relational databases

System.Data.Common using ADO.NET.

System.Data.EntityClient

System.Data.SqlClient

System.IO These namespaces define numerous types used to work with file

System.I0.Compression I/0, compression of data, and port manipulation.

System.IO.Ports

System.Reflection These namespaces define types that support runtime type discovery

System.Reflection.Emit as well as dynamic creation of types.

System.

System.
System.

System.
System.
System.

System.
.Xml.Ling
Data.DataSetExtensions

System

System.
System.

System.
System.

System.
System.

System.

System.
System.

System.

Runtime.InteropServices

Drawing
Windows.Forms

Windows
Windows.Controls
Windows.Shapes

Ling

Web

Web.Http
ServiceModel

Workflow.Runtime
Workflow.Activities

Threading

Threading.Tasks
Security

Xml

This namespace provides facilities to allow .NET types to interact
with unmanaged code (e.g., C-based DLLs and COM servers), and
vice versa.

These namespaces define types used to build desktop applications
using .NET’s original UI toolkit (Windows Forms).

The System.Windows namespace is the root for several namespaces
that represent the Windows Presentation Foundation (WPF) UL
toolkit.

These namespaces define types used when programming against
the LINQ APL

This is one of many namespaces that allows you to build ASPNET
web applications.

This is one of many namespaces that allows you to build RESTful
web services.

This is one of many namespaces used to build distributed
applications using the Windows Communication Foundation API.

These are two of many namespaces that define types used to build
“workflow-enabled” applications using the Windows Workflow
Foundation API.

This namespace defines numerous types to build multithreaded
applications that can distribute workloads across multiple CPUs.

Security is an integrated aspect of the .NET universe. In the
security-centric namespaces, you find numerous types dealing with
permissions, cryptography, and so on.

The XML-centric namespaces contain numerous types used to
interact with XML data.

24

CHAPTER 1 THE PHILOSOPHY OF .NET

The Role of the Microsoft Root Namespace

You probably noticed while reading over the listings in Table 1-3 that System is the root namespace for a
majority of nested namespaces (e.g., System.I0, System.Data). As it turns out, however, the .NET base class
library defines a number of topmost root namespaces beyond System, the most useful of which is named
Microsoft.

Any namespace nested within Microsoft (e.g., Microsoft.CSharp, Microsoft.ManagementConsole,
Microsoft.Win32) contains types that are used to interact with services unique to the Windows operating
system. Given this point, you should not assume that these types could be used successfully on other
.NET-enabled operating systems such as macOS. For the most part, this text will not dig into the details of the
Microsoft rooted namespaces, so be sure to consult the .NET Framework 4.7 SDK documentation if you are
interested.

Note Chapter 2 will illustrate the use of the .NET Framework 4.7 SDK documentation, which provides
details regarding every namespace, type, and member within the base class libraries.

Accessing a Namespace Programmatically

It is worth reiterating that a namespace is nothing more than a convenient way for us mere humans

to logically understand and organize related types. Consider again the System namespace. From your
perspective, you can assume that System.Console represents a class named Console that is contained within
a namespace called System. However, in the eyes of the .NET runtime, this is not so. The runtime engine sees
only a single class named System.Console.

In C#, the using keyword simplifies the process of referencing types defined in a particular namespace.
Here is how it works. Let’s say you are interested in building a graphical desktop application using the WPF
API. While learning the types each namespace contains takes study and experimentation, here are some
possible candidates to reference in your program:

// Here are some possible namespaces used to build a WPF application.
using System; // General base class library types.
using System.Windows.Shapes; // Graphical rendering types.

using System.Windows.Controls; // Windows Forms GUI widget types.
using System.Data; // General data-centric types.

using System.Data.SqlClient; // MS SOL Server data-access types.

Once you have specified some number of namespaces (and set a reference to the assemblies that define
them), you are free to create instances of the types they contain. For example, if you are interested in creating
an instance of the Button class (defined in the System.Windows.Controls namespace), you can write the
following:

// Explicitly list the namespaces used by this file.

using System;
using System.Windows.Controls;

25

http://dx.doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 1 THE PHILOSOPHY OF .NET

class MyGUIBuilder

public void BuildUI()

{
// Create a button control.
Button btnOK = new Button();

Because your code file is importing the System.Windows.Controls namespace, the compiler is able
to resolve the Button class as a member of this namespace. If you did not import the System.Windows.
Controls namespace, you would be issued a compiler error. However, you are free to declare variables
using a fully qualified name as well.

// Not listing System.Windows.Controls namespace!
using System;

class MyGUIBuilder

public void BuildUI()
{
// Using fully qualified name.
System.Windows.Controls.Button btnOK =
new System.Windows.Controls.Button();

While defining a type using the fully qualified name provides greater readability, I think you'd agree that
the C# using keyword reduces keystrokes. In this text, we will avoid the use of fully qualified names (unless
there is a definite ambiguity to be resolved) and opt for the simplified approach of the C# using keyword.

However, always remember that the using keyword is simply a shorthand notation for specifying a
type’s fully qualified name, and either approach results in the same underlying CIL (given that CIL code
always uses fully qualified names) and has no effect on performance or the size of the assembly.

Referencing External Assemblies

In addition to specifying a namespace via the C# using keyword, you need to tell the C# compiler the name
of the assembly containing the actual CIL implementation for the referenced type. As mentioned, many core
.NET namespaces are defined within mscorlib.d11. However, by way of example, the System.Drawing.Bitmap
class is contained within a separate assembly named System.Drawing.dll. A vast majority of the NET
Framework assemblies are located under a specific directory termed the global assembly cache (GAC). On a
Windows machine, this can be located by default under C: \Windows\Assembly\GAC, as shown in Figure 1-5.

26

CHAPTER 1 THE PHILOSOPHY OF .NET

+ | GAC - o X
“ Home Share View []
_J b Cut X] qE New item = 9 HH setect an
- u= Copy path { | Easy access = - Edit Select none
Fin to Quick Py 35t Move o Delete . New Properties =
access 7| Fast cut to to - folder - - Invert selection

“ v » ThisPC > Windows8_0S (C:) > Windows » bly » GAC v & | Search GAC)

-

Users Mame

Windows -
addins EmiDTE
ADFS EnvDTESD
sppcompat EnvDTESO
AppPatch ErvDTES02
E bili
AppReadiness wtensibility
Microsoft.DirectX
assembly

Microsoft.DirectX. AudioVideoPlayback

GAC Microsoft.Direct¥ . Diagnostics
GAC_32 Microsoft DirectX Direct3D
GAC_ B4 Microsoft.DirectX Direct3DX
GAC_MSIL Microsoft.DirectX.DirectDraw
Nativelmages_v2.0.50727_32 Microsoft.DirectX.Directinput

Microsoft.DirectX DirectPlay
Microsoft.Direct¥ DirectSound

[R A

Mativelmages_v2.0.50727_64

Nativelmages_v4.0.30319_32 v VE A1
48 items -

Figure 1-5. Many .NET libraries reside in the GAC

Depending on the development tool you are using to build your .NET applications, you will have
various ways to inform the compiler which assemblies you want to include during the compilation cycle.
You'll examine how to do so in Chapter 2, so I'll hold off on the details for now.

Note As you will see in Chapter 14, a Windows OS has multiple locations where framework libraries can
be installed; however, this is generally encapsulated from the developer. On a non-Windows machine (such as
macOS or Linux), the location of the GAC depends on the .NET distribution.

Exploring an Assembly Using ildasm.exe

If you are beginning to feel a tad overwhelmed at the thought of gaining mastery over every namespace in
the .NET platform, just remember that what makes a namespace unique is that it contains types that are
somehow semantically related. Therefore, if you have no need for a user interface beyond a simple console
application, you can forget all about the desktop and web namespaces (among others). If you are building
a painting application, the database namespaces are most likely of little concern. Like any new set of
prefabricated code, you learn as you go.

The Intermediate Language Disassembler utility (i1dasm. exe), which ships with the .NET Framework,
allows you to load up any .NET assembly and investigate its contents, including the associated manifest,
CIL code, and type metadata. This tool allows you to dive deeply into how their C# code maps to CIL and
ultimately helps you understand the inner workings of the .NET platform. While you never need to use
ildasm.exe to become a proficient .NET programmer, I highly recommend you fire up this tool from time to
time to better understand how your C# code maps to runtime concepts.

27

http://dx.doi.org/10.1007/978-1-4842-3018-3_2
http://dx.doi.org/10.1007/978-1-4842-3018-3_14

CHAPTER 1 THE PHILOSOPHY OF .NET

Note You can easily run ildasm.exe by opening a Visual Studio command prompt and typing ildasm
followed by the Enter key.

After you launch ildasm.exe, proceed to the File » Open menu command and navigate to an assembly
you want to explore. By way of illustration, Figure 1-6 shows the Calc.exe assembly generated based on the
Calc.cs file shown earlier in this chapter. ildasm. exe presents the structure of an assembly using a familiar
tree-view format.

FC:\MyBcoks\C#BookUthed]\Code\Chapter_1\... . O X
File View Help

P MANIFEST
& CalculatorExample
& CalculatorExample.Calc
b .class private auto ansi beforefieldinit
B .ctor : void()
B Add : int32(int32,int32)
&-[JE CalculatorExample.Program
P .class private auto ansi beforefieldinit
W .ctor : void()
B Main : void()

.assembly Calc A

Figure 1-6. ildasm.exe allows you to see the CIL code, manifest, and metadata within a .NET assembly

Viewing CIL Code

In addition to showing the namespaces, types, and members contained in a given assembly, i1dasm.exe
allows you to view the CIL instructions for a given member. For example, if you were to double-click the
Main() method of the Program class, a separate window would display the underlying CIL (see Figure 1-7).

28

CHAPTER 1 THE PHILOSOPHY OF .NET

J CalculatorExample.Program:Main : void() - O X

Find Find Next

|.method private hidebysig static void Hain() cil managed A

.entrypoint
// Code size
.maxstack 3

42 (0x2a)

.locals init (class CalculatorExample.Calc U_8,
int32 u_1)

IL_0868: nop
IL_00861: newobj
IL_80886: stloc.@
IL_08067: 1dloc.®@

instance void CalculatorExample.Calc::.ctor()

IL_9008: 1dc.ik.s 10
IL_000a: 1ldc.ik.s 84
IL_0808c: callvirt instance int32 CalculatorExample.Calc::Add(int32,

IL_B86811: stloc.1
IL_8812: 1dstr
IL_8817: 1dloc.1
IL_©818: box
IL_001d: call

IL_©8822: nop

T AN . FEsh]

int32)
10 + 84 is {@}."
[mscorlib]System.Int32

void [mscorlib]System.Console::WriteLine(string,
object)

mhsatimnn FocanalisbhlCuckam Doancalossloasdl s oanfl

Figure 1-7. Viewing the underlying CIL

Viewing Type Metadata

If you want to view the type metadata for the currently loaded assembly, press Ctrl+M. Figure 1-8 shows the
metadata for the Calc.Add() method.

7 Metalnfo
Find Find Next

TypDefName: Calcul
Flags : [NotPu

Extends : 01000805 [TypeRef] System.Object
Method #1 (06008083)

atorExample .Calc (02000003)
blic] [AutolLayout] [Class] [AnsiClass] [BeforeFieldInit] (00100000)

HMethodName :
Flags
RUA
ImplFlags :
CallCnuntn:
hasThis
ReturnType:
2 Arguments
Argume
Argume
2 Parameters
{1) Pa
(2) Pa

: [Public] [HideBySig] [ReuseSlot] (08080686)
: 0x00002090

Add (06000803)
[IL] [Managed] (00000080)
[DEFAULT]

I4

nt #1: 14
nt #2: 14

ramToken : (08000001) Hame
ramToken : (08000002) Hame

% flags: [none] (00000000)
y flags: [none] (00000000)

Figure 1-8. Viewing type metadata via ildasm.exe

29

CHAPTER 1 THE PHILOSOPHY OF .NET

Viewing Assembly Metadata (aka the Manifest)

Finally, if you are interested in viewing the contents of the assembly’s manifest (see Figure 1-9), simply
double-click the MANIFEST icon in the main window of i1dasm.exe.

J MANIFEST - o X
Find Find Next
// Metadata version: v4.8.30319 A
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 EO 89) /7 -
.ver 4:0:0:0
H
.assembly Calc
{
.custom instance void [mscorlib]System.Runtime.CompilerServices.Compilati
.custom instance void [mscorlib]System.Runtime.CompilerServices.RuntimeCo
// --- The following custom attribute is added automatically, do not unco

// .custom instance void [mscorlib]System.Diagnostics.DebuggableAttribut

-hash algorithm 0x00008004
-ver 0:0:0:0

.module Calc.exe
// MUID: {3B1AFD54-3A6D-4E2D-9F73-FBD693771A30}
.imagebase 0x00400000

< >
Figure 1-9. Viewing manifest data via ildasm.exe

To be sure, ildasm.exe has more options than shown here, and we will illustrate additional features of
the tool where appropriate in the text.

The Platform-Independent Nature of .NET

Allow me to briefly comment on the platform-independent nature of the .NET platform. With past versions
of .NET, it wasn’t widely known that .NET applications could be developed and executed on non-Microsoft
operating systems, including macOS, various Linux distributions, Solaris, and iOS and Android mobile
devices. With the release of .NET Core and the related fanfare, it is probably safe to assume that a large
number of developers are at least aware of the capability. To understand how this is possible, you need to
come to terms with yet another abbreviation in the .NET universe: CLI.

When Microsoft released the C# programming language and the .NET platform, it also crafted a set of
formal documents that described the syntax and semantics of the C# and CIL languages, the .NET assembly
format, the core .NET namespaces, and the mechanics of the .NET runtime engine. These documents
have been submitted to (and ratified by) Ecma International (www.ecma-international.org) as official
international standards. The specifications of interest are as follows:

ECMA-334: The C# Language Specification
ECMA-335: The Common Language Infrastructure (CLI)
30

http://www.ecma-international.org/

CHAPTER 1 THE PHILOSOPHY OF .NET

The importance of these documents becomes clear when you understand that they enable third
parties to build distributions of the .NET platform for any number of operating systems and/or processors.
ECMA-335 is the “meatier” of the two specifications, so much so that it has been broken into various
partitions, including those shown in Table 1-4.

Table 1-4. Partitions of the CLI
Partitions of ECMA-335 Meaning in Life

Partition I: Concepts and Architecture Describes the overall architecture of the CLI, including the
rules of the CTS and CLS and the mechanics of the .NET
runtime engine.

Partition II: Metadata Definition and Describes the details of .NET metadata and the assembly
Semantics format.

Partition III: CIL Instruction Set Describes the syntax and semantics of CIL code.

Partition IV: Profiles and Libraries Gives a high-level overview of the minimal and complete class

libraries that must be supported by a .NET distribution.

Partition V: Binary Formats Describes a standard way to interchange debugging
information between CLI producers and consumers.

Partition VI: Annexes Provides a collection of odds-and-ends details such as class
library design guidelines and the implementation details of a
CIL compiler.

Be aware that Partition IV (Profiles and Libraries) defines only a minimal set of namespaces that
represent the core services expected by a CLI distribution (e.g., collections, console 1/0, file I/O, threading,
reflection, network access, core security needs, XML data manipulation). The CLI does not define
namespaces that facilitate web development (ASP.NET), database access (ADO.NET), or desktop graphical
user interface (GUI) application development (Windows Presentation Foundation or Windows Forms).

The good news, however, is that the alternative .NET distribution (termed Mono) extends the CLI
libraries with Microsoft-compatible equivalents of ASP.NET implementations, ADO.NET implementations,
and various desktop GUI implementations to provide full-featured, production-level development
platforms. To date, there are three major implementations of the CLI beyond Microsoft’s Windows-specific
.NET platform. See Table 1-5.

Table 1-5. Open Source .NET Distributions

Distribution Meaning in Life

The Mono project The Mono project is an open source distribution of the CLI that targets various
Linux distributions (e.g., SuSe, Fedora), macOS, iOS devices (iPad, iPhone), Android
devices, and (surprise!) Windows.

Xamarin SDK Xamarin grew from the Mono project and allows for developing cross-platform GUI
applications for mobile devices. The SDK is open sourced, while the full Xamarin
product is not.

.NET Core In addition to the Windows-centric .NET Framework, Microsoft also supports a
cross-platform version of .NET, which focuses on the construction of code libraries,
data access, web services, and web applications.

31

http://www.mono-project.com/
http://www.dotgnu.org/

CHAPTER 1 THE PHILOSOPHY OF .NET

The Mono Project

The Mono project is an excellent choice if you want to build .NET software that can run on a variety of
operating systems. In addition to all the key .NET namespaces, Mono provides additional libraries to allow
the construction of GUI-based desktop software, ASP.NET web applications, and software-targeting mobile
devices (iPad, iPhone, and Android). You can download the Mono distribution from the following URL:

www.mono-project.com/

Out of the box, the Mono project consists of a number of command-line tools and all of the associated
code libraries. However, as you will see in Chapter 2, there is a full-fledged graphical IDE typically used with
Mono named Xamarin Studio. In fact, Microsoft Visual Studio projects can be loaded into Xamarin Studio
projects, and vice versa. Again, you can find more information in Chapter 2, but you might want to check out
the Xamarin web site for more details.

http://xamarin.com/

Xamarin

Xamarin descended from the Mono project and was created by many of the same engineers who created the
Mono project. While the Mono project is still alive and well, ever since Xamarin was purchased by Microsoft
and started shipping with Visual Studio 2017, Xamarin has become the default framework for creating
cross-platform GUI applications, especially for mobile devices. The Xamarin SDK ships with all versions of
Visual Studio 2017, and Visual Studio 2017 Enterprise license holders also get Xamarin Enterprise.

Microsoft .NET Core

The other major cross-platform distribution of .NET comes from Microsoft. Beginning in 2014, Microsoft
announced an open source version of its full-scale (Windows-specific) .NET 4.7 Framework called .NET
Core. The .NET Core distribution is not a complete carbon copy of the .NET 4.7 Framework. Rather, NET
Core focuses on the construction of ASP.NET web applications that can run on Linux, macOS, and
Windows. Thus, you can essentially consider .NET Core to be a subset of the full .NET Framework. You can
find a good article that compares and contrasts the full . NET Framework to the .NET Core framework on the
MSDN .NET Blog site. Here is a direct link (but if this changes, just do a web search for. NET Core is Open
Source):

http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx

As luck would have it, all the features of C#, as well as a number of key libraries, are included in .NET
Core. Therefore, a majority of this book will map directly to this distribution. Recall, though, that .NET Core
is focused on building RESTful services and web applications and does not provide implementations of
desktop GUI APIs (such as WPF or Windows Forms). If you need to build cross-platform GUI applications,
then Xamarin is the better choice.

.NET Core is covered in detail in Part IX of this book, including the philosophy of .NET Core, Entity
Framework Core, ASP.NET Core services, and ASP.NET Core web applications.

32

http://www.mono-project.com/
http://dx.doi.org/10.1007/978-1-4842-3018-3_2
http://dx.doi.org/10.1007/978-1-4842-3018-3_2
http://xamarin.com/
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx
http://dx.doi.org/10.1007/978-1-4842-3018-3_Part9

CHAPTER 1 THE PHILOSOPHY OF .NET

It is also worth noting that Microsoft has also released a free, lightweight, and cross-platform code
editor to help support development with .NET Core. This editor is simply named Visual Studio Code. While
itis certainly not as full featured as Microsoft Visual Studio or Xamarin Studio, it is a useful tool to edit C#
code in a cross-platform manner. While this text will not use Visual Studio Code, you might want to learn
more at the following web site:

https://code.visualstudio.com/

Summary

The point of this chapter was to lay out the conceptual framework necessary for the remainder of this book.
I began by examining a number of limitations and complexities found within the technologies prior to .NET
and followed up with an overview of how .NET and C# attempt to simplify the current state of affairs.

.NET basically boils down to a runtime execution engine (mscoree.d1l) and base class library
(mscorlib.dl1l and associates). The Common Language Runtime is able to host any .NET binary
(aka assembly) that abides by the rules of managed code. As you saw, assemblies contain CIL instructions
(in addition to type metadata and the assembly manifest) that are compiled to platform-specific instructions
using a just-in-time compiler. In addition, you explored the role of the Common Language Specification and
Common Type System. This was followed by an examination of the i1dasm.exe object browsing tool.

In the next chapter, you will take a tour of the common integrated development environments you can
use when you build your C# programming projects. You will be happy to know that in this book, you will use
completely free (and feature-rich) IDEs, so you can start exploring the .NET universe with no money down.

33

https://code.visualstudio.com/

CHAPTER 2

Building C# Applications

As a C# programmer, you can choose from among numerous tools to build .NET applications. The tool

(or tools) you select will be based primarily on three factors: any associated costs, the OS you are using

to develop the software, and the computing platforms you are targeting. The point of this chapter is to
provide a survey of the most common integrated development environments (IDEs) that support the C#
language. Do understand that this chapter will not go over every single detail of each IDE; it will give you
enough information to select your programming environment as you work through this text and give you a
foundation to build on.

The first part of this chapter will examine a set of IDEs from Microsoft that enable development of .NET
applications on a Windows operating system (7, 8.x, and 10). As you will see, some of these IDEs can be used
to build Windows-centric applications only, while others support the construction of C# apps for alternative
operating systems and devices (such as macOS, Linux, or Android). The latter part of this chapter will then
examine some IDEs that can run on a non-Windows OS. This enables developers to build C# programs using
Apple computers as well as Linux distributions.

Note This chapter will give you an overview of a good number of IDEs. However, this book will assume
you are using the (completely free) Visual Studio 2017 Community IDE. If you want to build your applications on
a different OS (macOS or Linux), this chapter will guide you in the right direction; however, your IDE will differ
from the various screenshots in this text.

Building .NET Applications on Windows

As you will see over the course of this chapter, you can choose from a variety of IDEs to build C#
applications; some come from Microsoft, and others come from third-party (many of which are open
source) vendors. Now, despite what you might be thinking, many Microsoft IDEs are completely free.
Thus, if your primary interest is to build .NET software on the Windows operating system (7, 8.x, or 10),
you will find the following major options:

e Visual Studio Community
e Visual Studio Professional
e Visual Studio Enterprise

The Express editions have been removed, leaving three versions of Visual Studio 2017. The Community
and Professional editions are essentially the same, with the main technical difference being that
Professional has CodeLens and Community does not. The more significant difference is in the licensing model.

© Andrew Troelsen and Philip Japikse 2017 35
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_2

https://doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 2 © BUILDING C# APPLICATIONS

Community is licensed for open source, academic, and small-business uses. Professional is licensed for
enterprise development. As one would expect, the Enterprise edition has many additional features above the
Professional edition.

Note For specific licensing details, please go to https://www.visualstudio.com. Licensing Microsoft
products can be complex, and this book does not cover the details. For the purposes of writing (and following
along with) this book, Community is legal to use.

Each IDE ships with sophisticated code editors, key database designers, integrated visual debuggers,
GUI designers for desktop and web applications, and so forth. Since they all share a common core set of
features, the good news is that it is easy to move between them and feel quite comfortable with their basic
operation.

Installing Visual Studio 2017

Before using Visual Studio 2017 to develop, execute, and debug C# applications, you need to get it installed.
The installation experience is dramatically different from previous versions and is worth discussing in
more detail.

Note You can download Visual Studio 2017 Community from https://www.visualstudio.com/
downloads.

The Visual Studio 2017 installation process is now broken down into application-type workloads. This
allows you to install just the components you need for the work you plan on doing. For example, if you are
going to build web applications, you would install the “ASP.NET and web development” workload.

Another (extremely) significant change is that Visual Studio 2017 supports true side-by-side installation.
Note that I am not referring to just previous versions of Visual Studio but to Visual Studio 2017 itself! On my
main workstation, I have Visual Studio 2017 Enterprise installed. For this book, I will be using Visual Studio
Community. With Visual Studio 2015 (and the previous edition of this book), I had to use a different machine
than the one I use to service clients. Now, it’s all on the same machine. If you have Professional or Enterprise
supplied by your employer, you can still install the Community edition to work on the open source projects
(or the code in this book).

When you launch the installer for Visual Studio 2017 Community, you are presented with the
screen shown in Figure 2-1. This screen has all of the workloads available, the option to select individual
components, and a summary on the right side showing what has been selected. Notice the red warning at
the bottom stating “A nickname must be provided to disambiguate this install” This is because I have other
installs of Visual Studio 2017 on my machine. If this is your first install, you won’t see this.

36

https://www.visualstudio.com/
https://www.visualstudio.com/downloads
https://www.visualstudio.com/downloads

Instaling — Viiasl Studio Communty 2017 — 1531

Individual

Language packs

Windiows (K}

W Unvenal Windows Platicam developmaent
W Creste appications for the Unverial Windows Plations with C4, VB, lavaSenpt, or
Cas

CHAPTER 2

.‘.-'] NET devitop

devsiapment
sl WPF, Windews Forma and coniole ppleaion using the NET Framework.

BUILDING C# APPLICATIONS

Summary
~ Visual Studio core editor

The it Stk cone shell saperinn
ek yyritan-amace code pdting wourte

cade comtrol and work item mansgement

fa=) Desktop development with Co +
|;| Buid clasac Windows-based applaations unng the power of the Visusl (o = toohet,
ATL anch cpticnal features Skoe MFC and Co o /CLL

Wb & Cloud (7)

ASPNET and web

Azure
B we appleations vung ASENET, ASPINET Core. WTML Ivateript and (55, L Pruimpnigian el progects for developing Cloud apes and CRItnG SRR

F Rythen deveispment
&7 E50ng. drbugging strractive deveiopment and source controlfor Pythor,

Diata stoiage and processing
Connect. develop and it dats sckutions suing SO Servee. Asure Dats Luke, Hadocp
o A ML

O SharePoint development

Craate Office and ShanePoint 280 k. SharePoint solution, and VETO add-ms using

8, VB, and IvaSonpt

D By contnamg, o agree 10 the Bopsse o the
Nibal S0 80 ying et 0 S50 e Tt
sty b3 ok ether wofbmpe it Vo
Sttt Thin st i bienied sepasitely. ot set

Mokile & Gaming (5}

Mobide deveiopment with NIT
Bud crow-platiom applcat-ons for 0% Andrond o Windows uing Xamarn

o i o Pty ot o e 4 net

Game developenent with Unity bereae. by cortimung,you she sgree 42 thse
Create 20 and 30 games with Uny. »] [Pl

Locaton
CPropia P [UBEAMacsioh Visussl Stude\ 201 P\Cimmemaunity

DA inctad

Figure 2-1. The new Visual Studio installer

For this book, you will want to install the following workloads:
e .NET desktop development
e ASP.NET and web development
e Data storage and processing
e .NET Core cross-platform development

I also had to add an installation nickname, ProC#. These selections are shown in Figure 2-2.

37

CHAPTER 2 * BUILDING C# APPLICATIONS

Language packs
Windows (1) Summary
M Ul W Platform deeiopment NET denkion deveicpment » Visusl "
MR Croste spplications bor the Univerial Windows Plationms with C8, VB, levaSieript or ..,J Busd WP, Winsdon Foarma, aecd comole applcation using the NET Framework Visual Studio core editor
optionally (s + » NET deskiop development

» ASP.NET and web development

fam Deskiop development with s » i :
sl clastac Windows-based sppieations uting e powes of the Viusl Co + tooinet, Data storage and processing
ATL and optsona! festures ke MFC and o +/CUL Ty uTT—

inchuded

Web & Cloud)

ASPHET ared web divelopenent > Azue deveiopment

Busild web pphestions whing ASPINET, ASPNET Core, HTML JaveSerit and C35. Adurs SOK. 1004, aad projects bor deveioping choud apps #nd arnating esources.
Optional
. se

WP ity debrapying, Intevacties development and scusce ccatral ot Python [l_" yrichiint vl

Bats vtoesge and processing iy B sciemcn nd anshytica spplcations

Connect,deveiop and test dats sobstions uning SO Server, Acure Data Lake, Hadaop Languages and toning for cresting data science applcations. inciudng Python, § and

o Azure ML be

tesrrrrersrs ey

B e s

Other Tooluets (1)
RG] Vioust Stucko extension development U drvwlopment with €+ +
mll Creste 5d-cra ared extend-ons Sor Visusl Shatis, mncuding e commands, ot Crbabe s el SppCaten rurnteng o & Livas #maronmaent
anatyrers and 100l wndin

T Core cross-platform. L,
Busid eroas- plathoem spphoationd uing NET Core. ASPNET Core. HTML JavaSergt and e
{11 .
p

frames

Rocaton Irstalation aknams
EAPrexgram Fies (1861 Mxrosolt Visual Studic\ 201 P\Community P tnstall size: 585G

Install

Figure 2-2. The selected workloads

Select Individual Components from the top of the installer, and select the following additional items:

e .NET Core runtime

e .NET Framework 4.6.2 SDK

e .NET Framework 4.6.2 targeting pack
e .NET Framework 4.7 SDK

e .NET Framework 4.7 targeting pack

e (lass Designer

e Testing tools core features

e Visual Studio Tools for Office (VSTO)

Once you have all of them selected, click Install. This will provide you with everything you need to work
through the examples in this book, including the new section on .NET Core.

Taking Visual Studio 2017 for a Test-Drive

Visual Studio 2017 is a one-stop shop for software development with the .NET platform and C#. Let’s take a
quick look at Visual Studio by building a simple Windows console application.

38

CHAPTER 2 © BUILDING C# APPLICATIONS

Building .NET Applications

To get your feet wet, let’s take some time to build a simple C# application and keep in mind that the topics
illustrated here will be useful for all editions of Visual Studio.

The New Project Dialog Box and C# Code Editor

Now that you have installed Visual Studio, activate the File » New Project menu option. As you can see in
Figure 2-3, this IDE has support for console apps, WPF/Windows Forms apps, Windows services, and many
more. To start, create a new C# Console Application project named SimpleCSharpConsoleApp, making sure

to change the Framework version to 4.7.

New Project
b Recent NET Framework 47 = Sortby: Default
4 nstalled (]
1 WP App (NET Framework)
AL
4 Templates e
4 Visual C# ! I Windows Forms App (NET Framework)
Windows Classic Desktop)
Web Console App (MNET Framework)
NET Core cn
_MET Standard 25! Class Library [NET Framework)
Cloud o
Test E_I Shared Project
WCF

cn
b Azure Data Lake Z[7] Windows Service (NET Framework)

I+ Other Languages

-
b Other Project Types h] Empty Project (NET Framework)

cn
Mot fi what you are locking for? @ WPF Browser App (NET Framework)
W

Open Visual Studio Installer cen
E!! WPF Custom Contrel Library (.NET Framework)
R H

«"
‘“ WPF User Control Library (NET Framewaork)

P Online

-cl
!n_] Windows Forms Control Library (NET Framework)

Mame: SimpleCSharpConsoleApp
Location:

Sclution name:

CAGitHub\procsharp\Code

SimpleCSharpConsoleApp

? x
s i= Search Installed Templates (Ctri+E) P~

Visual C# Type: Visual C#

A project for creating a command-line
application

Visual C#
Visual C#t
Visual C#
Visual C#
Visual C#
Visual C#
Visual C#
Visual C#

Visual C#

Visual C#

[Create directory for solution
[_] Add to Source Control

Figure 2-3. The New Project dialog box

Asyou can see from Figure 2-3, Visual Studio is capable of creating a variety of application types,

including Windows Desktop, Web, .NET Core, and many more. These will be covered throughout this book.

Note If you don’t see an option for .NET Framework 4.7, you will need to install the 4.7 Developer Pack,
available at https://www.microsoft.com/en-us/download/details.aspx?id=55168. You can also click the
“Install other frameworks...” option in drop-down list to get the Developer Pack.

39

https://www.microsoft.com/en-us/download/details.aspx?id=55168

CHAPTER 2 © BUILDING C# APPLICATIONS

Once the project has been created, you will see that the initial C# code file (named Program.cs) has
been opened in the code editor. Add the following C# code to your Main() method. You'll notice as you type
that IntelliSense will kick in as you apply the dot operator.

static void Main(string[] args)

{
// Set up Console UI (CUI)
Console.Title = "My Rocking App";
Console.ForegroundColor = ConsoleColor.Yellow;
Console.BackgroundColor = ConsoleColor.Blue;
Console.WIiteLine("*************************************"),'

Console.WriteLine("***** Welcome to My Rocking App *****");
i i " "y,
Console.WIlteLlne(Sk sk ok sk sk sk ok sk ok sk sk sk sk sk ok sk sk sk ok sk sk sk ok ok sk sk sk ok sk sk skeok sk skk ok),

Console.BackgroundColor = ConsoleColor.Black;

// Wait for Enter key to be pressed.
Console.ReadlLine();

Here, you are using the Console class defined in the System namespace. Because the System namespace
has been automatically included at the top of your file via a using statement, you have no need to qualify the
namespace before the class name (e.g., System.Console.WriteLine()). This program does not do anything
too interesting; however, note the final call to Console.ReadLine(). This is in place simply to ensure the user
must press a key to terminate the application. If you did not do this, the program would disappear almost
instantly when debugging the program!

Using C# 7.1 Features

At the time of this writing, Visual Studio doesn’t have direct support for creating C# 7.1 projects. To use
the new features, there are two options. The first is to update the project file manually, and the second is
to let the Visual Studio help (in the form of the quick-fix light bulb) update your project file for you. While
the latter sounds easiest, it’s not currently reliable, but I am certain it will get better in upcoming Visual
Studio releases.

To update the project file, open the SimpleCSharpConsoleApp.csproj file in any text editor
(except Visual Studio), and update the Debug and Release property groups to the following:

<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<PlatformTarget>AnyCPU</PlatformTarget>
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG; TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<Warninglevel>4</Warninglevel>
<LangVersion»7.1</Langlersion>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
<PlatformTarget>AnyCPU</PlatformTarget>
<DebugType>pdbonly</DebugType>
<Optimize>true</Optimize>

40

CHAPTER 2 © BUILDING C# APPLICATIONS

<OutputPath>bin\Release\</OutputPath>

<DefineConstants>TRACE</DefineConstants>

<ErrorReport>prompt</ErrorReport>

<Warninglevel>4</WarninglLevel>

<LangVersion»7.1<¢/LangVersion»
</PropertyGroup>

Running and Debugging Your Project

Now, to run your program and see the output, you can simply press the Ctrl+F5 keyboard command (which
is also accessed from the Debug » Start Without Debugging menu option). Once you do, you will see a
Windows console window pop on the screen with your custom (and colorful) message. Be aware that when
you “run” your program, you bypass the integrated debugger.

If you need to debug your code (which will certainly be important when building larger programs), your
first step is to set breakpoints at the code statement you want to examine. Although there isn’t much code in
this example, set a breakpoint by clicking the leftmost gray bar of the code editor (note that breakpoints are
marked with a red dot icon; see Figure 2-4).

Program.cs ® X

[£#] SimpleCSharpConsoleApp 1 SimpleCSharpConsoleApp. Program 1% Main(string[] args) =
7 =namespace SimpleCSharpConsoleApp Cx
g |{ 2
9 = class Program
10 {
11 = static void Main(string[] args)
12 {
13 // Set up Console UI (CUI)
® wu
15 Console.ForegroundColor = ConsoleColor.Yellow;
16 Console.BackgroundColor = ConsoleColor.Blue; P
l? Console_wr‘itel_ine{"***’8*******3******************Eﬂiﬂk****“);
18| I Console.WriteLine("*#**#** Welcome to My Rocking App *#**%"}).
19 Console-wr\iteLine{"***t*****************H*******ﬂl*ﬂ*****“);
20 Console,BackgroundColor = ConsoleColor.Black;
21 =
22 // Wait for Enter key to be pressed.
23 Console.ReadLine();
24|
25 }
26 }
27 |}
28
100% =~ 4 13

Figure 2-4. Setting breakpoints

If you now press the F5 key (or use the Debug » Start Debugging menu option or click the green arrow
with Start next to it in the toolbar), your program will halt at each breakpoint. As you would expect, you can
interact with the debugger using the various toolbar buttons and menu options of the IDE. Once you have
evaluated all breakpoints, the application will eventually terminate once Main() has completed.

41

CHAPTER 2 © BUILDING C# APPLICATIONS

Note Microsoft IDEs have sophisticated debuggers, and you will learn about various techniques over
the chapters to come. For now, be aware that when you are in a debugging session, a large number of useful
options will appear under the Debug menu. Take a moment to verify this for yourself.

Solution Explorer

If you look at the right of the IDE, you will see a window named Solution Explorer, which shows you a few
important things. First, notice that the IDE has created a solution with a single project (see Figure 2-5). This
can be confusing at first, as they both have been given the same name (SimpleCSharpConsoleApp). The
idea here is that a “solution” can contain multiple projects that all work together. For example, your solution
might include three class libraries, one WPF application, and one WCF web service. The earlier chapters of
this book will always have a single project; however, when you build some more complex examples, you'll
see how to add new projects to your initial solution space.

Solution Explorer v I X
QE-|o-¢F@| o p =
Search Solution Explorer (Ctrl+;) P~

k] Solution 'SimpleCSharpConsoleApp' (1 project)
4 SimpleCSharpConsoleApp
b Properties
4 B References
& Analyzers
=B Microsoft.CSharp
5B System
=B System.Core
5B System.Data
5B System.Data.DataSetExtensions
5B System.Net.Http
5B System.Xml
=B System.Xml.Ling
) App.config
P C* Program.cs

RIGTSEIEE Solution Explorer Rl WSS

Figure 2-5. Solution Explorer

Note Be aware that when you select the topmost solution in the Solution Explorer window, the IDE’s
menu system will show you a different set of choices than when you select a project. If you ever find yourself
wondering where a certain menu item has disappeared to, double-check you did not accidentally select the
wrong node.

42

CHAPTER 2 © BUILDING C# APPLICATIONS

You will also notice a References icon. You can use this node when your application needs to reference
additional .NET libraries beyond what are included for a project type by default. Because you have created a
C# Console Application project, you will notice a number of libraries have been automatically added such as
System.dll, System.Core.dll, System.Data.dll, and so forth (note the items listed under the References
node don’t show the .d11 file extension). You will see how to add libraries to a project shortly.

Note Recall from Chapter 1 that all .NET projects have access to a foundational library named
mscorlib.d1l. This library is so necessary that it is not even listed explicitly in Solution Explorer.

The Object Browser

If you were to right-click any library under the References node and select View in Object Browser, you
will open the integrated Object Browser (you can also open this using the View menu). Using this tool, you
can see the various namespaces in an assembly, the types in a namespace, and the members of each type.
Figure 2-6 shows some namespaces of the always-present mscorlib.dll assembly.

Object Browser # X [l K bl
Browse: My Solution - | (<] im | B
<Search> e
4 ()} System «| @ Action(object, System.IntPtr)
b ¥z AccessViolationException @ Begininvoke(System.AsyncCallback, object)
- @ Endinvoke(System.lAsyncResult)
b & Action<in T> @ Invoke()
I & Action<in T1,inT2,inT3,inT4,in TS, in
I & Action<inT1,inT2,in T3, in T4, in TS, in
P & Action<in T1,in T2, in T3, in T4, in TS, in
P & Action<in T1,in T2, in T3, in T4, in T5>
> Action<inT1,inT2,in T3, in T4>
I & Action<inT1,in T2, in T3>
b & Action<in T1,in T2> public delegate void Action()
b #3 ActivationContext Member of System
I & ActivationContext.ContextForm
b *#3 Activator Summary:
b AggregateException Encapsulates a method that has no parameters and does not return a
b %z AppContext value.
4 . : »

Figure 2-6. The Object Browser

This tool can be useful when you want to see the internal organization of a .NET library as well as when
you want to get a brief description of a given item. Also notice the <Search> bar at the top of the window.
This can be helpful when you know the name of a type you want to use but have no idea where it might be
located. On a related note, keep in mind that the search feature will search only the libraries used in your
current solution by default (you can search the entire .NET Framework by changing the selection in the
Browse drop-down box).

43

http://dx.doi.org/10.1007/978-1-4842-3018-3_1

CHAPTER 2 * BUILDING C# APPLICATIONS

Referencing Additional Assemblies

To continue your test, let’s add an assembly (aka code library) not automatically included in a Console
Application project. To do so, right-click the References tab of Solution Explorer and select Add Reference
(or select the Project » Add Reference menu option). From the resulting dialog box, find a library named
System.Windows.Forms.dll (again, you won't see the file extension here) and check it off (Figure 2-7).

Reference Manager - SimpleCSharpConsaoleApp ? X
4 Assemblies Targeting: .NET Framework 4.7 Search Assemblies (Ctrl+E) P ~
m Name Version “ Name:
Extensions System.Web.DataVisualization 4.0.00 Accessibility
Recent System.Web.DataVisualization.Design 4000 Created by:
System.Web.DynamicData 4.000 Microsoft Corporation
b Projects System.Web.DyrjamacData.Demgn 4.0.00 Version:
System.Web.Entity 4,000 4.0.00
P Shared Projects System.Web.Entity.Design 4,000 File Version:
System.Web.Extensions 4,000 4.7.2046.0 built by: NET47REL1
b COM System.Web.Extensions.Design 4.0.00
b Browse System.Web.Mobile) 4000
System.Web.RegularExpressions 4000
System.Web.Routing 4.0.0.0
System.Web.Services 4000
System.Windows 4.0.0.0
System.Windows.Controls.Ribbon 4000
System.Windows.Forms 4.0.00
System.Windows.Forms.DataVisualization 4000
System.Windows.Forms.DataVisualization.Desi... 4.0.0.0
System.Windows.Input.Manipulations 4.0.0.0
System.Windows.Presentation 4.0.0.0
System.Workflow.Activities 4,000
System.Workflow.ComponentModel 4.0.0.0
System.Workflow.Runtime 4.0.0.0
System.WorkflowServices 4.0.0.0
System.Xaml| 4000
[v] System.Xml 4000
[v] System.Xml.Ling 4.0.0.0 -
Browse... l | OK | | Cancel

Figure 2-7. Adding references

Once you click the OK button, this new library is added to your reference set (you'll see it listed under
the References node). As explained in Chapter 1, however, referencing a library is only the first step. To use
the types in a given C# code file, you need to define a using statement. Add the following line to the using
directives in your code file:
using System.Windows.Forms;

Then add the following line of code directly after the call to Console.ReadLine() in your Main()
method:

MessageBox.Show("All done!");
When you run or debug your program once again, you will find a simple message box appears before

the program terminates.

44

http://dx.doi.org/10.1007/978-1-4842-3018-3_1

CHAPTER 2 © BUILDING C# APPLICATIONS

Viewing Project Properties

Next, notice an icon named Properties within Solution Explorer. When you double-click this item, you are
presented with a sophisticated project configuration editor. For example, in Figure 2-8, notice how you can
change the version of the .NET Framework you are targeting for the solution.

SimpleCSharpConsoleApp* + > [olj[lagl:If-I-1s Program.cs*
Application N/A
ild
Bui N/A
Build Events
Debug Assembly name: Default namespace:
Resources SimpleCSharpConsoleApp SimpleCSharpConsoleApp
Services Target framework: Output type:
Settings |.NET Framework 4.7 ~| Console Application M
Reference Paths | NET Framework 2.0
Signing NET Framework 3.0
Security {NET Framework 3.5) Assembly Information...
) NET Framework 3.5 Client Profile %
Publish NET Framework 4
Code Analysis .MET Framework 4 Client Profile
NET Framework 4.5 L d:
NET Framework 4.5.1 ’
.NET Framework 4.5.2
.NET Framework 4.6
NET Framework 4.6.1 application. To embed a custom manifest, first
NET Framework 4.6.2 he list below.
NET Framework 4.7
Install other frameworks...
TOETauTt Icony el | - l
Manifest:
Embed manifest with default settings v
O Resource file:
< >

Figure 2-8. The Project Properties window

You will see various aspects of the Project Properties window as you progress through this book.
However, if you take some time to poke around, you will see that you can establish various security settings,
strongly name your assembly (see Chapter 14), deploy your application, insert application resources, and
configure pre- and post-build events.

45

http://dx.doi.org/10.1007/978-1-4842-3018-3_14

CHAPTER 2 * BUILDING C# APPLICATIONS

The Visual Class Designer

Visual Studio also gives you the ability to design classes and other types (such as interfaces or delegates)
in a visual manner. The Class Designer utility allows you to view and modify the relationships of the types
(classes, interfaces, structures, enumerations, and delegates) in your project. Using this tool, you are able
to visually add (or remove) members to (or from) a type and have your modifications reflected in the
corresponding C# file. Also, as you modify a given C# file, changes are reflected in the class diagram.

To access the visual type designer tools, the first step is to insert a new class diagram file. To do so,
activate the Project » Add New Item menu option and locate the Class Diagram type (Figure 2-9).

Add New Item - SimpleCSharpConsoleApp ? *
4 Installed Sort by: Default - 8= Search Installed Templates (Ctrl +E) P~
4 RIS ..;j User Control Visual C# ltems Type: Visual C# ltems
Code A blank class diagram
Dot ! | Compaonent Class Visual C# Items
%
General
P Web l.' User Control (WPF) Visual C# Items
Windows Forms s
WPF About Box Visual C# Items
b ASP.NET Core
SQL Server Q? ADO.NET Entity Data Model Visual C# Items
Storm Items
b Online Ylj Application Configuration File Visual C# Items
Application Manifest File Visual C# ltems
==
D] Assembly Information File Visual C# items
E Bitmap File Visual C# Items
% Class Diagram Visual C¥ Items
E Code Analysis Rule Set Visual C# Items
=
E] Code File Visual C# Items
I-F Cursor File Visual C# Items
[l [PPSO \Finasnl 8 tomman pd
Mame: ClassDiagram.cd

Figure 2-9. Inserting a class diagram file into the current project

Initially, the designer will be empty; however, you can drag and drop files from your Solution Explorer
window on the surface. For example, once you drag Program. cs onto the designer, you will find a visual
representation of the Program class. If you click the arrow icon for a given type, you can show or hide the
type’s members (see Figure 2-10).

46

CHAPTER 2 © BUILDING C# APPLICATIONS

ClassDiagraml.cd* & X

Program
i Class
i

i| 4 Methods

Class Details - Program

* 1 x
% ~ Name Type Modifier Summary Hide
% 4 Methods | I~

I'j C)' . N -
2 b P5 Main void private O
® <add method>

P 4 Properties

<add property>
% & property

4 Fields
@ <add field>
4 Events

Figure 2-10. The Class Diagram viewer

Note Using the Class Designer toolbar, you can fine-tune the display options of the designer surface.

The Class Designer utility works in conjunction with two other aspects of Visual Studio: the Class
Details window (activated using the View » Other Windows menu) and the Class Designer Toolbox
(activated using the View » Toolbox menu item). The Class Details window not only shows you the details

of the currently selected item in the diagram but also allows you to modify existing members and insert new
members on the fly (see Figure 2-11).

Class Details - Program

* O %
%@ ~ Name Type Modifier Summary Hide
4 Methods O =
"@ $ + . .
. P Y Main void private | |
g @ <add method>

ublic ~
@ 4 Properties

y F <add property>
4 Fields
@ -add field>
4 Events

£ cadd seante

Figure 2-11. The Class Details window

47

CHAPTER 2 * BUILDING C# APPLICATIONS

The Class Designer Toolbox, which can also be activated using the View menu, allows you to insert new
types (and create relationships between these types) into your project visually (see Figure 2-12).
(Be aware you must have a class diagram as the active window to view this toolbox.) As you do so, the IDE
automatically creates new C# type definitions in the background.

Toolbox vy =B X
Search Toolbox P~

k Pointer

] Class

] Enum

T Interface

£ 1 Abstract Class

1 struct

[Delegate

4 Inheritance
€L Association

4 Comment
4 General

There are no usable controls in this group. Drag an
item onto this text to add it to the toolbox.

Figure 2-12. The Class Designer Toolbox

By way of example, drag a new class from the Class Designer Toolbox onto your Class Designer. Name
this class Car in the resulting dialog box. This will result in the creation of a new C# file named Car.cs that is
automatically added to your project. Now, using the Class Details window, add a public string field named
PetName (see Figure 2-13).

Class Details - Car * I X

~ MName Type Modifier Summary Hide
4 Methods -
® <add method>
4 Properties
K <add property>
4 Fields O
o
@ <add field>
4 Events

£ cadil pnoente el

S v

Figure 2-13. Adding a field with the Class Details window

48

CHAPTER 2 © BUILDING C# APPLICATIONS

If you now look at the C# definition of the Car class, you will see it has been updated accordingly
(minus the additional code comments shown here).

public class Car

// Public data is typically a bad idea; however,
/1 it keeps this example simple.
public string PetName;

}

Now, activate the designer file once again and drag another new class onto the designer and name it
SportsCar. Select the Inheritance icon from the Class Designer Toolbox and click the top of the SportsCar
icon. Next, click the mouse on top of the Car class icon. If you performed these steps correctly, you have just
derived the SportsCar class from Car (see Figure 2-14).

[N ciocoiegemicar = < [

-~
Program A
Cl (&
ass Car A
Class
4 Methods
©a Main 4 Fields
@ PetName
- i
| SportsCar A
Class
< Car
%
b
4 3

Figure 2-14. Visually deriving from an existing class

Note The concept of inheritance will be fully examined in Chapter 6.

49

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 2 © BUILDING C# APPLICATIONS

To complete this example, update the generated SportsCar class with a public method named
GetPetName(), authored as follows:

public class SportsCar : Car

{
public string GetPetName()
{
PetName = "Fred";
return PetName;
}
}

As you would expect, the visual type designer is one of the many features of Visual Studio Community.
As mentioned earlier, this edition of the book will assume you are using Visual Studio Community as your
IDE of choice. Over the chapters to come, you will learn many more features of this tool.

Source Code You can find the SimpleCSharpConsoleApp project in the Chapter 2 subdirectory.

Visual Studio 2017 Professional

As mentioned earlier, the main difference between Community and Professional editions is the allowable
usage scenarios. If you are currently employed as a software engineer, the chances are good your company
has purchased a copy of this edition for you as your tool of choice.

Visual Studio 2017 Enterprise

To wrap up your examination of the Visual Studio editions that run on Windows, let’s take a quick look at
Visual Studio 2017 Enterprise. Visual Studio 2017 Enterprise has all the same features found in Visual Studio
Professional, as well as additional features geared toward corporate-level collaborative development and full
support for cross-platform mobile development with Xamarin.

Iwon’t be saying much more about Visual Studio 2017 Enterprise edition. For the purposes of this book,
any of the three versions (Community, Professional, and Enterprise) will work.

Note You can find a side-by-side comparison of Community vs. Professional vs. Enterprise at
https://www.visualstudio.com/vs/compare/.

The .NET Framework Documentation System

The final aspect of Visual Studio you must be comfortable with from the outset is the fully integrated
help system. The .NET Framework documentation is extremely good, very readable, and full of useful
information. Given the huge number of predefined .NET types (which number well into the thousands),
you must be willing to roll up your sleeves and dig into the provided documentation. If you resist, you are
doomed to a long, frustrating, and painful existence as a .NET developer.

50

http://dx.doi.org/10.1007/978-1-4842-3018-3_2
https://www.visualstudio.com/vs/compare/

CHAPTER 2 © BUILDING C# APPLICATIONS

You can view the .NET Framework SDK documentation at the following web address:

https://docs.microsoft.com/en-us/dotnet/

Note It would not be surprising if Microsoft someday changes the location of the online .NET Framework
Class Library documentation. If this is the case, a web search for the same topic (.NET Framework Class Library
documentation) should quickly help you find the current location.

Once you are on this main page, click “Switch to the Library TOC view.” This will change the page to
aview that is easier to navigate. Locate the .NET Development node in the TOC, and click the arrow to
expand the TOC. Next, click the arrow next to the .NET Framework 4.7, 4.6, and 4.5 node. Finally, click the
“NET Framework class library” entry. At this point, you can use the tree navigation window to view each
namespace, type, and member of the platform. See Figure 2-15 for an example of viewing the types of the
System namespace.

€ C @ Secure hittps://msdn.microsoft.com v r

» NET Development > NET Framework 4.7, 46, and 45 > NET Framework Class Library =

A D

System Namespace

NET Framework (current version) t

nly-used value and reference data types, IN THIS ARTICLE

Classes

Class Description

Figure 2-15. Viewing the .NET Framework documentation online

51

https://docs.microsoft.com/en-us/dotnet/

CHAPTER 2 © BUILDING C# APPLICATIONS

Note At the risk of sounding like a broken record, | can’t emphasize enough how important it is that you
learn to use the .NET Framework SDK documentation. No book, no matter how lengthy, can cover every aspect
of the .NET platform. Make sure you take some time to get comfortable using the help system—you’ll thank
yourself later.

Building.NET Applications on a Non-Windows 0S

There are several options for building .NET applications on non-Windows operating systems. In addition to
Xamarin Studio, there are also Visual Studio for the Mac and Visual Studio Code (which also runs on Linux).
The types of applications that can be built with these development environments are limited to applications
that are being developed either using .NET Core (Visual Studio Code and Visual Studio for the Mac) or for
mobile (Visual Studio for the Mac, Xamarin Studio).

That is all I will mention about the non-Windows development tools in this book. But rest assured that
Microsoft is embracing all developers, not just developers who own Windows-based computers.

Summary

Asyou can see, you have many new toys at your disposal! The point of this chapter was to provide you with
a tour of the major programming tools a C# programmer may leverage during the development process. As
mentioned, if you are interested only in building .NET applications on a Windows development machine,
your best bet is to download Visual Studio Community. As also mentioned, this edition of the book will use
this particular IDE going forward. Thus, the forthcoming screenshots, menu options, and visual designers
will all assume you are using Visual Studio Community.

If you want to build .NET Core applications or cross-platform mobile application on a non-Windows
OS, then Visual Studio for the Mac, Visual Studio Code, or Xamarin Studio will be your best choice.

52

PART Il

Core C# Programing

CHAPTER 3

Core C# Programming
Constructs, Part |

This chapter begins your formal investigation of the C# programming language by presenting a number

of bite-sized, stand-alone topics you must be comfortable with as you explore the .NET Framework. The
first order of business is to understand how to build your program’s application object and to examine the
composition of an executable program’s entry point: the Main() method. Next, you will investigate the
fundamental C# data types (and their equivalent types in the System namespace) including an examination
of the System.String and System.Text.StringBuilder classes.

After you know the details of the fundamental .NET data types, you will then examine a number of
data type conversion techniques, including narrowing operations, widening operations, and the use of the
checked and unchecked keywords.

This chapter will also examine the role of the C# var keyword, which allows you to implicitly define
alocal variable. As you will see later in this book, implicit typing is extremely helpful, if not occasionally
mandatory, when working with the LINQ technology set. You will wrap up this chapter by quickly examining
the C# keywords and operators that allow you to control the flow of an application using various looping and
decision constructs.

The Anatomy of a Simple C# Program

C# demands that all program logic be contained within a type definition (recall from Chapter 1 that type is
a general term referring to a member of the set {class, interface, structure, enumeration, delegate}). Unlike
many other languages, in C# it is not possible to create global functions or global points of data. Rather, all
data members and all methods must be contained within a type definition. To get the ball rolling, create a
new Console Application project named SimpleCSharpApp. You might agree that the code within the initial
Program.cs file is rather uneventful.

using System;

using System.Collections.Generic;
using System.Lling;

using System.Text;

using System.Threading.Tasks;

© Andrew Troelsen and Philip Japikse 2017 55
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_3

https://doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_1

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

namespace SimpleCSharpApp
{
class Program
{
static void Main(string[] args)
{
}
}
}

Given this, update the Main() method of your Program class with the following code statements:

class Program
{
static void Main(string[] args)
{
// Display a simple message to the user.
Console.WritelLine("***** My First C# App *¥***");
Console.WritelLine("Hello World!");
Console.Writeline();

// Wait for Enter key to be pressed before shutting down.
Console.ReadlLine();

Note C# is a case-sensitive programming language. Therefore, Main is not the same as main, and
Readline is not the same as ReadLine. Be aware that all C# keywords are lowercase (e.g., public, lock, class,
dynamic), while namespaces, types, and member names begin (by convention) with an initial capital letter
and have capitalized the first letter of any embedded words (e.g., Console.WriteLine, System.Windows.
MessageBox, System.Data.SqlClient). As a rule of thumb, whenever you receive a compiler error regarding
“undefined symbols,” be sure to check your spelling and casing first!

The previous code contains a definition for a class type that supports a single method named Main().
By default, Visual Studio names the class definingMain() Program; however, you are free to change this if
you so choose. Every executable C# application (console program, Windows desktop program, or Windows
service) must contain a class defining a Main() method, which is used to signify the entry point of the
application.

Formally speaking, the class that defines the Main() method is termed the application object. While it is
possible for a single executable application to have more than one application object (which can be useful
when performing unit tests), you must inform the compiler which Main() method should be used as the
entry point via the /main option of the command-line compiler or via the Startup Object drop- down list box,
located on the Application tab of the Visual Studio project properties window (see Chapter 2).

Note that the signature of Main() is adorned with the static keyword, which will be examined in
detail in Chapter 5. For the time being, simply understand that static members are scoped to the class level
(rather than the object level) and can thus be invoked without the need to first create a new class instance.

56

http://dx.doi.org/10.1007/978-1-4842-3018-3_2
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

In addition to the static keyword, this Main() method has a single parameter, which happens to be
an array of strings (string[] args). Although you are not currently bothering to process this array, this
parameter may contain any number of incoming command-line arguments (you'll see how to access them
momentarily). Finally, this Main() method has been set up with a void return value, meaning you do not
explicitly define a return value using the return keyword before exiting the method scope.

The logic of Program is within Main(). Here, you make use of the Console class, which is defined within
the System namespace. Among its set of members is the static WritelLine(), which, as you might assume,
sends a text string and carriage return to the standard output. You also make a call to Console.ReadLine() to
ensure the command prompt launched by the Visual Studio IDE remains visible during a debugging session
until you press the Enter key. (If you did not add this line, your application would terminate immediately
during a debugging session and you could not read the output!) You will learn more about the System.
Console class shortly.

Variations on the Main() Method

By default, Visual Studio will generate a Main() method that has a void return value and an array of string
types as the single input parameter. This is not the only possible form of Main(), however. It is permissible
to construct your application’s entry point using any of the following signatures (assuming it is contained
within a C# class or structure definition):

// int return type, array of strings as the parameter.
static int Main(string[] args)
{

// Must return a value before exiting!

return O;

}

// No return type, no parameters.
static void Main()

{

}

// int return type, no parameters.
static int Main()
{
// Must return a value before exiting!
return 0;

}

Note The Main() method may also be defined as public as opposed to private, which is assumed if you
do not supply a specific access modifier. Visual Studio automatically defines a program’s Main() method as
implicitly private.

Obviously, your choice of how to construct Main() will be based on two questions. First, do you want
to return a value to the system when Main() has completed and your program terminates? If so, you need to
return an int data type rather than void. Second, do you need to process any user-supplied, command-line
parameters? If so, they will be stored in the array of strings. Let’s examine all of the options in more detail.

57

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Async Main Methods (New)

With the release of C# 7.1, the Main() method can now be asynchronous. Async programming is covered in
Chapter 19, but for now realize there are four additional signatures.

static Task Main()

static Task<int> Main()

static Task Main(string[])
static Task<int> Main(string[])

These will be covered in greater detail in Chapter 19.

Specifying an Application Error Code

While a vast majority of your Main () methods will return void as the return value, the ability to return an
int from Main() keeps C# consistent with other C-based languages. By convention, returning the value 0
indicates the program has terminated successfully, while another value (such as -1) represents an error
condition (be aware that the value 0 is automatically returned, even if you construct a Main() method
prototyped to return void).

On the Windows operating system, an application’s return value is stored within a system environment
variable named %ERRORLEVEL%. If you were to create an application that programmatically launches another
executable (a topic examined in Chapter 18), you can obtain the value of #ERRORLEVEL% using the static
System.Diagnostics.Process.ExitCode property.

Given that an application’s return value is passed to the system at the time the application terminates,
it is obviously not possible for an application to obtain and display its final error code while running.
However, to illustrate how to view this error level upon program termination, begin by updating the Main()
method, as follows:

// Note we are now returning an int, rather than void.
static int Main(string[] args)
{
// Display a message and wait for Enter key to be pressed.
Console.WriteLine("**¥*¥* My First C# App *¥rik");
Console.WritelLine("Hello World!");
Console.WritelLine();
Console.ReadlLine();

// Return an arbitrary error code.
return -1;

Now let’s capture the return value of Main() with the help of a batch file. Using Windows Explorer,
navigate to the folder containing your solution file (for example, C: \SimpleCSharpApp\). Add a new text file
(named SimpleCSharpApp.bat) to that folder containing the following instructions (if you have not authored
*.bat files before, don’t concern yourself with the details; this is a test . . . this is only a test):

@echo off
rem A batch file for SimpleCSharpApp.exe

rem which captures the app's return value.

58

http://dx.doi.org/10.1007/978-1-4842-3018-3_19
http://dx.doi.org/10.1007/978-1-4842-3018-3_19
http://dx.doi.org/10.1007/978-1-4842-3018-3_18

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

.\SimpleCSharpApp\bin\debug\SimpleCSharpApp
@if "%ERRORLEVEL%" == "0" goto success

:fail
echo This application has failed!
echo return value = %ZERRORLEVEL%
goto end

1success
echo This application has succeeded!
echo return value = %ZERRORLEVEL%
goto end

tend

echo All Done.

At this point, open a command prompt and navigate to the folder containing your executable and new
*.bat file. Execute the batch logic by typing its name and pressing the Enter key. You should find the output
shown next, given that your Main() method is returning -1. Had the Main() method returned 0, you would
see the message “This application has succeeded!” print to the console.

Hello World!

This application has failed!
return value = -1
A1l Done.

Again, a vast majority (if not all) of your C# applications will use void as the return value from Main(),
which, as you recall, implicitly returns the error code of zero. To this end, the Main() methods used in this
text (beyond the current example) will indeed return void (and the remaining projects will certainly not
need to make use of batch files to capture return codes).

Processing Command-Line Arguments

Now that you better understand the return value of the Main() method, let’s examine the incoming array of
string data. Assume that you now want to update your application to process any possible command-line
parameters. One way to do so is using a C# for loop. (Note that C#'s iteration constructs will be examined in
some detail near the end of this chapter.)

static int Main(string[] args)

{

// Process any incoming args.
for(int i = 0; i < args.Length; i++)
Console.WriteLine("Arg: {0}", args[i]);

Console.ReadlLine();

return -1;

}

59

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Here, you are checking to see whether the array of strings contains some number of items using the
Length property of System.Array. As you'll see in Chapter 4, all C# arrays actually alias the System.Array class
and, therefore, share a common set of members. As you loop over each item in the array, its value is printed to
the console window. Supplying the arguments at the command line is equally simple, as shown here:

C:\SimpleCSharpApp\bin\Debug>SimpleCSharpApp.exe /argl -arg2

Hello World!
Arg: /argi
Arg: -arg2

As an alternative to the standard for loop, you may iterate over an incoming string array using the C#
foreach keyword. Here is some sample usage (but again, you will see specifics of looping constructs later in
this chapter):

// Notice you have no need to check the size of the array when using "foreach".
static int Main(string[] args)

{

// Process any incoming args using foreach.
foreach(string arg in args)
Console.WriteLine("Arg: {0}", arg);

Console.ReadlLine();
return -1;

}

Finally, you are also able to access command-line arguments using the static GetCommandLineArgs ()
method of the System.Environment type. The return value of this method is an array of strings. The first
index identifies the name of the application itself, while the remaining elements in the array contain the
individual command-line arguments. Note that when using this approach, it is no longer necessary to define
Main() as taking a string array as the input parameter, although there is no harm in doing so.

static int Main(string[] args)

{

// Get arguments using System.Environment.

string[] theArgs = Environment.GetCommandLineArgs();

foreach(string arg in theArgs)
Console.WriteLine("Arg: {0}", arg);

Console.ReadlLine();
return -1;

}

Of course, it is up to you to determine which command-line arguments your program will respond
to (if any) and how they must be formatted (such as with a - or / prefix). Here, [simply passed in a series
of options that were printed directly to the command prompt. Assume, however, you were creating a new
video game and programmed your application to process an option named -godmode. If the user starts your
application with the flag, you know he is, in fact, a cheater, and you can take an appropriate course of action.

60

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Specifying Command-Line Arguments with Visual Studio

In the real world, an end user has the option of supplying command-line arguments when starting a
program. However, during the development cycle, you might want to specify possible command-line flags
for testing purposes. To do so with Visual Studio, double-click the Properties icon in Solution Explorer and
select the Debug tab on the left side. From there, specify values using the “Command line arguments” text
box (see Figure 3-1) and save your changes.

SimpleCSharpApp & X

Application Configuration: Active (Debug) ~ Platform: Active (Any CPU) k:
Build
Build Events
Resources ® start project
Services
Settings O start external program:
Reference Paths (O Start browser with URL:
Signing
Security Start options
Publish Command line arguments: -godmede -arg1 /arg2
Code Analysis
Working directory: Browse...
[Use remote machine
Debugger engines
[Enable native code debugging
[Enable SQL Server debugging

Figure 3-1. Setting command arguments via Visual Studio

After you have established such command-line arguments, they will automatically be passed to the
Main() method when debugging or running your application within the Visual Studio IDE.

An Interesting Aside: Some Additional Members of the
System.Environment Class

The Environment class exposes a number of extremely helpful methods beyond GetCommandLineArgs ().
Specifically, this class allows you to obtain a number of details regarding the operating system currently
hosting your .NET application using various static members. To illustrate the usefulness of System.
Environment, update your Main() method to call a helper method named ShowEnvironmentDetails().

static int Main(string[] args)

{
// Helper method within the Program class.
ShowEnvironmentDetails();

Console.ReadlLine();
return -1;

61

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Implement this method within your Program class to call various members of the Environment type.

static void ShowEnvironmentDetails()
{
// Print out the drives on this machine,
// and other interesting details.
foreach (string drive in Environment.GetlLogicalDrives())
Console.WritelLine("Drive: {0}", drive);

Console.WritelLine("0S: {0}", Environment.0SVersion);

Console.WriteLine("Number of processors: {0}",
Environment.ProcessorCount);

Console.WritelLine(".NET Version: {o0}",
Environment.Version);

The following output shows a possible test run of invoking this method. Of course, if you did not specify
command-line arguments via the Visual Studio Debug tab, you will not find them printed to the console.

Hello World!

Arg: -godmode
Arg: -argi
Arg: /arg2

Drive: C:\

Drive: D:\

0S: Microsoft Windows NT 6.2.9200.0
Number of processors: 8

.NET Version: 4.0.30319.42000

The Environment type defines members other than those shown in the previous example. Table 3-1
documents some additional properties of interest; however, be sure to check out the .NET Framework 4.7
SDK documentation for full details.

Table 3-1. Select Properties of System.Environment

Property Meaning in Life

ExitCode Gets or sets the exit code for the application

Is64BitOperatingSystem Returns a bool to represent whether the host machine is running a 64-bit OS

MachineName Gets the name of the current machine

NewLine Gets the newline symbol for the current environment

SystemDirectory Returns the full path to the system directory

UserName Returns the name of the user that started this application

Version Returns a Version object that represents the version of the .NET platform

62

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Source Code You can find the SimpleCSharpApp project in the Chapter 3 subdirectory.

The System.Console Class

Almost all the example applications created over the course of the initial chapters of this book make
extensive use of the System.Console class. While it is true that a console user interface (CUI) may not be
as enticing as a graphical user interface (GUI) or web application, restricting the early examples to console
programs will allow you to keep focused on the syntax of C# and the core aspects of the .NET platform, rather
than dealing with the complexities of building desktop GUIs or web sites.

As its name implies, the Console class encapsulates input, output, and error-stream manipulations
for console-based applications. Table 3-2 lists some (but definitely not all) members of interest. As you can
see, the Console class does provide some members that can spice up a simple command-line application,
such as the ability to change background and foreground colors and issue beep noises (in a variety of
frequencies!).

Table 3-2. Select Members of System.Console

Member Meaning in Life

Beep() This method forces the console to emit a beep of a specified frequency and
duration.

BackgroundColor These properties set the background/foreground colors for the current output.

ForegroundColor They may be assigned any member of the ConsoleColor enumeration.

BufferHeight These properties control the height/width of the console’s buffer area.

BufferWidth

Title This property gets or sets the title of the current console.

WindowHeight These properties control the dimensions of the console in relation to the
established buffer.

WindowWidth

WindowTop

WindowLeft

Clear() This method clears the established buffer and console display area.

Basic Input and Output with the Console Class

In addition to the members in Table 3-2, the Console type defines a set of methods to capture input and
output, all of which are static and are, therefore, called by prefixing the name of the class (Console) to the
method name. As you have seen, WritelLine() pumps a text string (including a carriage return) to the output
stream. The Write() method pumps text to the output stream without a carriage return. ReadLine() allows
you to receive information from the input stream up until the Enter key is pressed, while Read() is used to
capture a single character from the input stream.

63

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

To illustrate basic I/0O using the Console class, create a new Console Application project named
BasicConsolelO and update your Main() method to call a helper method named GetUserData().

class Program
{
static void Main(string[] args)
{
Console.WritelLine("***** Basic Console I/Q *****"),
GetUserData();
Console.ReadlLine();

}

private static void GetUserData()
{
}

}

Note Visual Studio supports a number of “code snippets” that will insert code once activated. The cw code
snippet is quite useful during the early chapters of this text, in that it will automatically expand to Console.
WriteLine()! To test this for yourself, type in cw somewhere within your Main() method and hit the Tab key
twice (sadly, there is no code snippet for Console.ReadLine()). To see all code snippets, right-click in a C#
code file and choose the Insert Snippet menu option.

Implement this method within the Program class with logic that prompts the user for some bits of
information and echoes each item to the standard output stream. For example, you could ask the user for a name
and age (which will be treated as a text value for simplicity, rather than the expected numerical value), as follows:

static void GetUserData()

{
// Get name and age.
Console.Write("Please enter your name: ");
string userName = Console.ReadlLine();
Console.Write("Please enter your age: ");
string userAge = Console.ReadlLine();

// Change echo color, just for fun.
ConsoleColor prevColor = Console.ForegroundColor;
Console.ForegroundColor = ConsoleColor.Yellow;

// Echo to the console.
Console.WriteLine("Hello {0}! You are {1} years old.",
userName, userAge);

// Restore previous color.
Console.ForegroundColor = prevColor;

64

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Not surprisingly, when you run this application, the input data is printed to the console (using a custom
color to boot!).

Formatting Console Output

During these first few chapters, you might have noticed numerous occurrences of tokens such as {0} and {1}
embedded within various string literals. The .NET platform supports a style of string formatting slightly akin
to the printf() statement of C. Simply put, when you are defining a string literal that contains segments of
data whose value is not known until runtime, you are able to specify a placeholder within the literal using
this curly-bracket syntax. At runtime, the values passed into Console.WritelLine() are substituted for each
placeholder.

The first parameter to WritelLine() represents a string literal that contains optional placeholders
designated by {0}, {1}, {2}, and so forth. Be aware that the first ordinal number of a curly-bracket
placeholder always begins with 0. The remaining parameters to WritelLine() are simply the values to be
inserted into the respective placeholders.

Note If you have more uniquely numbered curly-bracket placeholders than fill arguments, you will receive
a format exception at runtime. However, if you have more fill arguments than placeholders, the unused fill
arguments are ignored.

It is permissible for a given placeholder to repeat within a given string. For example, if you are a Beatles
fan and want to build the string "9, Number 9, Number 9", you would write this:

// John says...
Console.WriteLine("{0}, Number {0}, Number {o}", 9);

Also, know that it is possible to position each placeholder in any location within a string literal, and it
need not follow an increasing sequence. For example, consider the following code snippet:

// Prints: 20, 10, 30
Console.WritelLine("{1}, {o}, {2}", 10, 20, 30);

Formatting Numerical Data

If you require more elaborate formatting for numerical data, each placeholder can optionally contain
various format characters. Table 3-3 shows the most common formatting options.

65

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Table 3-3. .NET Numerical Format Characters

String Format Character ~ Meaning in Life

Corc Used to format currency. By default, the flag will prefix the local cultural
symbol (a dollar sign [$] for U.S. English).

Dord Used to format decimal numbers. This flag may also specify the minimum
number of digits used to pad the value.

Eore Used for exponential notation. Casing controls whether the exponential
constant is uppercase (E) or lowercase (e).

Forf Used for fixed-point formatting. This flag may also specify the minimum
number of digits used to pad the value.

Gorg Stands for general. This character can be used to format a number to fixed or
exponential format.

Norn Used for basic numerical formatting (with commas).

Xorx Used for hexadecimal formatting. If you use an uppercase X, your hex format

will also contain uppercase characters.

These format characters are suffixed to a given placeholder value using the colon token (e.g., {0:C},
{1:d}, {2:X}). To illustrate, update the Main() method to call a new helper function named
FormatNumericalData(). Implement this method in your Program class to format a fixed numerical value in
a variety of ways.

// Now make use of some format tags.

static void FormatNumericalData()

{
Console.WritelLine("The value 99999 in various formats:");
Console.WritelLine("c format: {0:c}", 99999);
Console.WritelLine("d9 format: {0:d9}", 99999);
Console.WriteLine("f3 format: {0:f3}", 99999);
Console.WritelLine("n format: {0:n}", 99999);

// Notice that upper- or lowercasing for hex
// determines if letters are upper- or lowercase.
Console.WriteLine("E format: {0:E}", 99999);
Console.WriteLine("e format: {0:e}", 99999);
Console.WritelLine("X format: {0:X}", 99999);
Console.WritelLine("x format: {0:x}", 99999);

66

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

The following output shows the result of calling the FormatNumericalData() method:

The value 99999 in various formats:

¢ format: $99,999.00

d9 format: 000099999

3 format: 99999.000

n format: 99,999.00

E format: 9.999900E+004
e format: 9.999900e+004
X format: 1869F

x format: 1869f

You'll see additional formatting examples where required throughout this text; however, if you are
interested in digging into .NET string formatting further, look up the topic “Formatting Types” within the
.NET Framework 4.7 SDK documentation.

Source Code You can find the BasicConsolelO project in the Chapter 3 subdirectory.

Formatting Numerical Data Beyond Console Applications

On a final note, be aware that the use of the .NET string formatting characters is not limited to console
programs. This same formatting syntax can be used when calling the static string.Format() method.
This can be helpful when you need to compose textual data at runtime for use in any application type
(e.g., desktop GUI app, ASP.NET web app, and so forth).

The string.Format() method returns a new string object, which is formatted according to the
provided flags. After this point, you are free to use the textual data as you see fit. For example, assume you are
building a graphical WPF desktop application and need to format a string for display in a message box. The
following code illustrates how to do so, but be aware that this code will not compile until you reference the
PresentationFramework.dll assembly for use by your project (see Chapter 2 for information on referencing
libraries using Visual Studio).

static void DisplayMessage()
{
// Using string.Format() to format a string literal.
string userMessage = string.Format("100000 in hex is {0:x}", 100000);

// You need to reference PresentationFramework.dll
// in order to compile this line of code!
System.Windows .MessageBox.Show(userMessage);

Note .NET 4.6 and C# 6 introduced an alternative syntax to the curly-bracket placeholders termed string
interpolation syntax. You will examine this approach later in the chapter.

67

http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

System Data Types and Corresponding C# Keywords

Like any programming language, C# defines keywords for fundamental data types, which are used to
represent local variables, class data member variables, method return values, and parameters. Unlike
other programming languages, however, these keywords are much more than simple compiler- recognized
tokens. Rather, the C# data type keywords are actually shorthand notations for full-blown types in the System
namespace. Table 3-4 lists each system data type, its range, the corresponding C# keyword, and the type’s
compliance with the Common Language Specification (CLS).

Table 3-4. The Intrinsic Data Types of C#

C# Shorthand CLS Compliant? System Type

Range

Meaning in Life

bool

sbyte
byte
short
ushort

int
uint
long
ulong
char
float
double
decimal
string

Object

Yes

Yes

Yes

Yes

Yes

Yes

Yes

System.

System.
System.
System.
System.
System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

Boolean

SByte
Byte
Int16
UInt16
Int32

UInt32
Int64
UInt64
Char
Single
Double
Decimal
String

Object

true or false

-128 to 127

0 to 255
-32,768 to 32,767
0 to 65,535

-2,147,483,648 to
2,147,483,647

0to 4,294,967,295

-9,223,372,036,854,775,
808 t0 9,223,372,036,854,
775,807

0 to 18,446,744,073,709,
551,615

U+0000 to U+ffff

-3.410% to +3.4 10%

+5.0 10%* to 1.7 10°%

(-7.9x10%to 7.9x 10%*)/
(100 to 28)

Limited by system
memory

Can store any data type
in an object variable

Represents truth or
falsity

Signed 8-bit number
Unsigned 8-bit number
Signed 16-bit number
Unsigned 16-bit number
Signed 32-bit number

Unsigned 32-bit number
Signed 64-bit to number

Unsigned 64-bit number

Single 16-bit Unicode
character

32-bit floating-point
number

64-bit floating-point
number

128-bit signed number

Represents a set of
Unicode characters

The base class of all
types in the .NET
universe

68

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Note Recall from Chapter 1 that CLS-compliant .NET code can be used by any managed programming
language. If you expose non-CLS-compliant data from your programs, other .NET languages might not be able
to make use of it.

By default, a floating-point number is treated as a double. To declare a f1loat variable, use the suffix f or F
to the raw numerical value (5.3F), and use the suffix m or M to a floating-point number to declare a decimal
(300.5M). Finally, raw whole numbers default to an int data type. To set the underlying data type to a long,
suffix 1 or L (4L).

Variable Declaration and Initialization

When you are declaring a local variable (e.g., a variable within a member scope), you do so by specifying
the data type followed by the variable’s name. To begin, create a new Console Application project named
BasicDataTypes. Update the Program class with the following helper method that is called from within
Main():

static void LocalVarDeclarations()
{
Console.WriteLine("=> Data Declarations:");
// Local variables are declared as so:
// dataType varName;
int myInt;
string myString;
Console.Writeline();

Be aware that it is a compiler error to make use of a local variable before assigning an initial value. Given
this, it is good practice to assign an initial value to your local data points at the time of declaration. You may
do so on a single line or by separating the declaration and assignment into two code statements.

static void LocalVarDeclarations()
{
Console.WriteLine("=> Data Declarations:");
// Local variables are declared and initialized as follows:
// dataType varName = initialValue;
int myInt = 0;

/1 You can also declare and assign on two lines.
string myString;

myString = "This is my character data";

Console.WriteLine();

69

http://dx.doi.org/10.1007/978-1-4842-3018-3_1

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

It is also permissible to declare multiple variables of the same underlying type on a single line of code,
as in the following three bool variables:

static void LocalVarDeclarations()
{
Console.WriteLine("=> Data Declarations:");
int myInt = 0;
string myString;
myString = "This is my character data";

// Declare 3 bools on a single line.
bool b1 = true, b2 = false, b3 = bi;
Console.Writeline();

Since the C# bool keyword is simply a shorthand notation for the System.Boolean structure, it is also
possible to allocate any data type using its full name (of course, the same point holds true for any C# data
type keyword). Here is the final implementation of LocalVarDeclarations(), which illustrates various ways
to declare a local variable:

static void LocalVarDeclarations()
{
Console.WritelLine("=> Data Declarations:");
// Local variables are declared and initialized as follows:
// dataType varName = initialValue;
int myInt = 0;

string myString;
myString = "This is my character data";

// Declare 3 bools on a single line.
bool bl = true, b2 = false, b3 = bi;

// Use System.Boolean data type to declare a bool.
System.Boolean b4 = false;

Console.WritelLine("Your data: {o}, {1}, {2}, {3}, {4}, {5}",
myInt, myString, b1, b2, b3, b4);
Console.Writeline();

The default Literal (New)

The default literal is a new feature in C# 7.1 that allows for assigning a variable the default value for its data
type. This works for standard data types as well as custom classes (Chapter 5) and generic types (Chapter 9).
Create a new method named DefaultDeclarations() and add the following code:

static void DefaultDeclarations()

{

Console.Writeline("=> Default Declarations:");
int myInt = default;

}

70

http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Unless you manually configured the project to use C# 7.1, the project will not compile. If you hover over
the default keyword, the Visual Studio light bulb will enable you to upgrade your project to C# 7.1, as shown
in Figure 3-2.

static void DefaultDeclarations()

Console.WriteLine("=> Default Declarations:");

int myInt = default;
Upgrade this project to Cf language version ‘latest’ @) 58107 Feature ‘default literal is not available in C7 7. Please use language version 7.1
Upgrade this project to C# language version 7.1 Lo greater.

Figure 3-2. Upgrading the project to C# 7.1

Intrinsic Data Types and the new Operator

All intrinsic data types support what is known as a default constructor (see Chapter 5). This feature allows
you to create a variable using the new keyword, which automatically sets the variable to its default value.

e bool variables are set to false.

e Numeric data is set to 0 (or 0.0 in the case of floating-point data types).
e char variables are set to a single empty character.

e BigInteger variables are set to 0.

e DateTime variables are setto 1/1/0001 12:00:00 AM.

e Object references (including strings) are set to null.

Note The BigInteger data type mentioned in the previous list will be explained in just a bit.

Although it is more cumbersome to use the new keyword when creating a basic data type variable, the
following is syntactically well-formed C# code:

static void NewingDataTypes()

{
Console.WriteLine("=> Using new to create variables:");
bool b = new bool(); // Set to false.
int i = new int(); // Set to o.
double d = new double(); // Set to o.
DateTime dt = new DateTime(); // Set to 1/1/0001 12:00:00 AM

Console.WriteLine("{0}, {1}, {2}, {3}", b, i, d, dt);
Console.WriteLine();

71

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

The Data Type Class Hierarchy

It is interesting to note that even the primitive .NET data types are arranged in a class hierarchy. If you are
new to the world of inheritance, you will discover the full details in Chapter 6. Until then, just understand
that types at the top of a class hierarchy provide some default behaviors that are granted to the derived types.
The relationship between these core system types can be understood as shown in Figure 3-3.

Object < < Boolean
¢ Uint16
“ Byte
E Ui * Uint32
< Char
1L « Ulnt64
< Decimal
1 « Void
ValueType i Double
—— Exception Any type DateTime
that derives
from * Int16
— Delegate Valtilse';ype « Guid
1 structure Int32
e TimeSpan
MulticastDelegate not a class.
< Int64
B Single
SByte

T

Enumerations and Structures

Figure 3-3. The class hierarchy of system types

Notice that each type ultimately derives from System.Object, which defines a set of methods
(e.g., ToString(), Equals(), GetHashCode()) common to all types in the .NET base class libraries (these
methods are fully detailed in Chapter 6).

Also note that many numerical data types derive from a class named System.ValueType. Descendants
of ValueType are automatically allocated on the stack and, therefore, have a predictable lifetime and are
quite efficient. On the other hand, types that do not have System.ValueType in their inheritance chain
(such as System.Type, System.String, System.Array, System.Exception, and System.Delegate) are not

72

http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

allocated on the stack but on the garbage-collected heap. (You can find more information on this distinction
in Chapter 4.)

Without getting too hung up on the details of System.Object and System.ValueType, just understand
that because a C# keyword (such as int) is simply shorthand notation for the corresponding system type
(in this case, System.Int32), the following is perfectly legal syntax, given that System.Int32 (the C# int)
eventually derives from System.Object and, therefore, can invoke any of its public members, as illustrated
by this additional helper function:

static void ObjectFunctionality()

{
Console.WriteLine("=> System.Object Functionality:");

// A Cit int is really a shorthand for System.Int32,

// which inherits the following members from System.Object.
Console.WritelLine("12.GetHashCode() = {0}", 12.GetHashCode());
Console.WriteLine("12.Equals(23) = {0}", 12.Equals(23));
Console.WriteLine("12.ToString() = {0}", 12.ToString());
Console.WriteLine("12.GetType() = {0}", 12.GetType());
Console.WritelLine();

If you were to call this method from within Main(), you would find the output shown here:

=> System.Object Functionality:

12.GetHashCode() = 12
12.Equals(23) = False
12.ToString() = 12
12.GetType() = System.Int32

Members of Numerical Data Types

To continue experimenting with the intrinsic C# data types, understand that the numerical types of .NET
support MaxValue and MinValue properties that provide information regarding the range a given type can
store. In addition to the MinValue/MaxValue properties, a given numerical system type may define further
useful members. For example, the System.Double type allows you to obtain the values for epsilon and
infinity (which might be of interest to those of you with a mathematical flare). To illustrate, consider the
following helper function:

static void DataTypeFunctionality()
{

Console.WriteLine("=> Data type Functionality:");

Console.WritelLine("Max of int: {0}", int.MaxValue);
Console.WriteLine("Min of int: {0}", int.MinValue);
Console.WriteLine("Max of double: {0}", double.MaxValue);
Console.WriteLine("Min of double: {0}", double.MinValue);
Console.WriteLine("double.Epsilon: {0}", double.Epsilon);

73

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Console.WritelLine("double.PositiveInfinity: {0}",
double.PositiveInfinity);

Console.WriteLine("double.NegativeInfinity: {o0}",
double.NegativeInfinity);

Console.WriteLine();

}

Members of System.Boolean

Next, consider the System.Boolean data type. The only valid assignment a C# bool can take is from

the set {true | false}. Given this point, it should be clear that System.Boolean does not support a
MinValue/MaxValue property set but rather TrueString/FalseString (which yields the string "True" or
"False", respectively). Here's an example:

Console.WritelLine("bool.FalseString: {0}", bool.FalseString);
Console.WriteLine("bool.TrueString: {0}", bool.TrueString);

Members of System.Char

C# textual data is represented by the string and char keywords, which are simple shorthand notations for
System.String and System.Char, both of which are Unicode under the hood. As you might already know, a
string represents a contiguous set of characters (e.g., "Hello"), while the char can represent a single slot in
astring(e.g, 'H").

The System.Char type provides you with a great deal of functionality beyond the ability to hold a single
point of character data. Using the static methods of System. Char, you are able to determine whether a given
character is numerical, alphabetical, a point of punctuation, or whatnot. Consider the following method:

static void CharFunctionality()
{
Console.WriteLine("=> char type Functionality:");
char myChar = 'a’;
Console.WriteLine("char.IsDigit('a"'): {0}", char.IsDigit(myChar));
Console.WritelLine("char.IsLetter('a"): {0}", char.IsLetter(myChar));
Console.WriteLine("char.IsWhiteSpace('Hello There', 5): {o}",
char.IsWhiteSpace("Hello There", 5));
Console.WriteLine("char.IsWhiteSpace('Hello There', 6): {0}",
char.IsWhiteSpace("Hello There", 6));
Console.WriteLine("char.IsPunctuation('?'): {o0}",
char.IsPunctuation('?"));
Console.WritelLine();

As illustrated in the previous method, many members of System.Char have two calling conventions: a
single character or a string with a numerical index that specifies the position of the character to test.

74

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Parsing Values from String Data

The .NET data types provide the ability to generate a variable of their underlying type given a textual
equivalent (e.g., parsing). This technique can be extremely helpful when you want to convert some user
input data (such as a selection from a GUI-based, drop-down list box) into a numerical value. Consider the
following parsing logic within a method named ParseFromStrings():

static void ParseFromStrings()

{
Console.WriteLine("=> Data type parsing:");
bool b = bool.Parse("True");
Console.WritelLine("Value of b: {0}", b);
double d = double.Parse("99.884");
Console.WritelLine("Value of d: {o}", d);
int 1 = int.Parse("8");
Console.WritelLine("Value of i: {o}", i);
char ¢ = Char.Parse("w");
Console.WritelLine("Value of c: {0}", c);
Console.Writeline();

}

Using TryParse to Parse Values from String Data

One issue with the preceding code is that an exception will be thrown if the string cannot be cleanly
converted to the correct data type. For example, the following will fail at runtime:

bool b = bool.Parse("Hello");

One solution is to wrap each call to Parse() in a try-catch block (exception handling is covered in detail
in Chapter 7), which can add a lot of code, or use a TryParse() statement. The TryParse() statement takes
an out parameter (the out modifier is covered in detail in the Chapter 4) and returns a bool if the parsing was

successful. Create a new method named ParseFromStringWithTryParse() and add the following code:

static void ParseFromStringsWithTryParse()

{
Console.WriteLine("=> Data type parsing with TryParse:");
if (bool.TryParse("True", out bool b));
Console.WriteLine("Value of b: {0}", b);
}
string value = "Hello";
if (double.TryParse(value, out double d))
{
Console.Writeline("Value of d: {o}", d);
}
else
{
Console.WritelLine("Failed to convert the input ({0}) to a double",value);
}
Console.WritelLine();
}

75

http://dx.doi.org/10.1007/978-1-4842-3018-3_7
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

If you are new to programming and don’t know how if-else statements work, they are covered later
in this chapter in detail. The important item to note from the preceding example is that if a string can be
converted to the requested datatype, the TryParse() method returns true and assigns the parsed value to
the variable passed into the method. If the value cannot be parsed, the variable is assigned its default value,
and the TryParse() method returns false.

System.DateTime and System.TimeSpan

The System namespace defines a few useful data types for which there are no C# keywords, such as the
DateTime and TimeSpan structures. (I'll leave the investigation of System.Guid and System.Void, as shown
in Figure 3-2, to interested readers, but do be aware that these two data types in the System namespace are
seldom useful in most applications.)

The DateTime type contains data that represents a specific date (month, day, year) and time value, both
of which may be formatted in a variety of ways using the supplied members. The TimeSpan structure allows
you to easily define and transform units of time using various members.

static void UseDatesAndTimes()

{

Console.WritelLine("=> Dates and Times:");

// This constructor takes (year, month, day).
DateTime dt = new DateTime(2015, 10, 17);

// What day of the month is this?
Console.WriteLine("The day of {0} is {1}", dt.Date, dt.DayOflWeek);

// Month is now December.
dt = dt.AddMonths(2);
Console.WriteLine("Daylight savings: {0}", dt.IsDaylightSavingTime());

// This constructor takes (hours, minutes, seconds).
TimeSpan ts = new TimeSpan(4, 30, 0);
Console.Writeline(ts);

// Subtract 15 minutes from the current TimeSpan and
// print the result.
Console.WritelLine(ts.Subtract(new TimeSpan(0, 15, 0)));

The System.Numerics.dll Assembly

The System.Numerics namespace defines a structure named BigInteger. As its name implies, the
BigInteger data type can be used when you need to represent humongous numerical values, which are not
constrained by a fixed upper or lower limit.

Note The System.Numerics namespace defines a second structure named Complex, which allows you to
model mathematically complex numerical data (e.g., imaginary units, real data, hyperbolic tangents). Consult
the .NET Framework 4.7 SDK documentation if you are interested.

76

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

While many of your .NET applications might never need to make use of the BigInteger structure, if you
do find the need to define a massive numerical value, your first step is to reference the System.Numerics.dll
assembly into your project. If you want to follow along with the current example, perform the following tasks:

1. Select the Project » Add Reference menu option of Visual Studio.

2. Locate and select the System.Numerics.dll assembly within the list of presented
libraries found in the Framework tab on the left side.

3. Click the OK button.

After you have done so, add the following using directive to the file, which will be using the BigInteger
data type:

// BigInteger lives here!
using System.Numerics;

At this point, you can create a BigInteger variable using the new operator. Within the constructor, you
can specify a numerical value, including floating-point data. However, recall that when you define a literal
whole number (such as 500), the runtime will default the data type to an int. Likewise, literal floating-point
data (such as 55.333) will default to a double. How, then, can you set BigInteger to a massive value while
not overflowing the default data types used for raw numerical values?

The simplest approach is to establish the massive numerical value as a text literal, which can be
converted into a BigInteger variable via the static Parse() method. If required, you can also pass in a byte
array directly to the constructor of the BigInteger class.

Note After you assign a value to a BigInteger variable, you cannot change it, as the data is immutable.
However, the BigInteger class defines a number of members that will return new BigInteger objects based
on your data modifications (such as the static Multiply() method used in the preceding code sample).

In any case, after you have defined a BigInteger variable, you will find this class defines similar
members as other intrinsic C# data types (e.g., Tloat, int). In addition, the BigInteger class defines several
static members that allow you to apply basic mathematical expressions (such as adding and multiplying) to
BigInteger variables. Here is an example of working with the BigInteger class:

static void UseBigInteger()
{
Console.WriteLine("=> Use BigInteger:");
BigInteger biggy =
BigInteger.Parse("99");
Console.WriteLine("Value of biggy is {0}", biggy);
Console.WriteLine("Is biggy an even value?: {0}", biggy.IsEven);
Console.WriteLine("Is biggy a power of two?: {0}", biggy.IsPowerOfTwo);
BigInteger reallyBig = BigInteger.Multiply(biggy,
BigInteger.Parse("88888888883888838883838888388883888838888388888"));
Console.Writeline("Value of reallyBig is {0}", reallyBig);

7

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

It is also important to note that the BigInteger data type responds to C#’s intrinsic mathematical
operators, such as +, -, and *. Therefore, rather than calling BigInteger.Multiply() to multiply two huge
numbers, you could author the following code:

BigInteger reallyBig2 = biggy * reallyBig;

At this point, I hope you understand that the C# keywords representing basic data types have a
corresponding type in the .NET base class libraries, each of which exposes a fixed functionality. While I have
not detailed each member of these data types, you are in a great position to dig into the details as you see fit.
Be sure to consult the .NET Framework 4.7 SDK documentation for full details regarding the various .NET
data types—you will likely be surprised at the amount of built-in functionality.

Source Code You can find the BasicDataTypes project in the Chapter 3 subdirectory.

Digit Separators (New)

Sometimes when assigning large numbers to a numeric variable, there are more digits than the eye can keep
track of. C# 7 introduces the underscore (_) as a digit separator (for integer, long, decimal, or double data
types). Here'’s an example of using the new digit separator:

static void DigitSeparators()

{
Console.WriteLine("=> Use Digit Separators:");
Console.Write("Integer:");
Console.WriteLine(123 456);
Console.Write("Long:");
Console.WriteLine(123 456 789L);
Console.Write("Float:");
Console.Writeline(123 456.1234F);
Console.Write("Double:");
Console.WriteLine(123 456.12);
Console.Write("Decimal:");
Console.Writeline(123 456.12M);

Binary Literals (New)

C# 7 introduces a new literal for binary values, for example, for creating bit masks. Now, binary numbers can
be written as you would expect. Here’s an example:

0b0001_0000

78

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

The new digit separator also works with binary literals. Here is a method that shows using the new
literals with the digit separator:

private static void BinarylLiterals()

{

Console.WriteLine("=> Use Binary Literals:");
Console.WriteLine("Sixteen: {0}",0b0001_0000);
Console.WriteLine("Thirty Two: {0}",0b0010 0000);
Console.WritelLine("Sixty Four: {0}",0b0100 0000);

}

Working with String Data

System. String provides a number of methods you would expect from such a utility class, including methods
that return the length of the character data, find substrings within the current string, and convert to and from
uppercase/lowercase. Table 3-5 lists some (but by no means all) of the interesting members.

Table 3-5. Select Members of System.String

String Member Meaning in Life

Length This property returns the length of the current string.

Compare() This static method compares two strings.

Contains() This method determines whether a string contains a specific substring.

Equals() This method tests whether two string objects contain identical character data.

Format() This static method formats a string using other primitives (e.g., numerical data,
other strings) and the {0} notation examined earlier in this chapter.

Insert() This method inserts a string within a given string.

PadLeft() These methods are used to pad a string with some characters.

PadRight()

Remove() These methods are used to receive a copy of a string with modifications (characters
removed or replaced).

Replace()

Split() This method returns a String array containing the substrings in this instance that
are delimited by elements of a specified char array or string array.

Trim() This method removes all occurrences of a set of specified characters from the
beginning and end of the current string.

ToUpper () These methods create a copy of the current string in uppercase or lowercase format,
respectively.

ToLower()

79

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Basic String Manipulation

Working with the members of System.String is as you would expect. Simply declare a string variable
and make use of the provided functionality via the dot operator. Be aware that a few of the members of
System.String are static members and are, therefore, called at the class (rather than the object) level.
Assume you have created a new Console Application project named FunWithStrings. Author the following
method, which should be called from within Main():

static void BasicStringFunctionality()

{
Console.WriteLine("=> Basic String functionality:");
string firstName = "Freddy";
Console.WritelLine("Value of firstName: {0}", firstName);
Console.WriteLine("firstName has {0} characters.", firstName.Length);
Console.WriteLine("firstName in uppercase: {0}", firstName.ToUpper());
Console.WritelLine("firstName in lowercase: {0}", firstName.Tolower());
Console.WritelLine("firstName contains the letter y?: {o0}",

firstName.Contains("y"));

Console.WriteLine("firstName after replace: {0}", firstName.Replace("dy", ""));
Console.Writeline();

There’s not too much to say here, as this method simply invokes various members, such as ToUpper ()
and Contains(), on alocal string variable to yield various formats and transformations. Here is the initial
output:

HRIRE Fun with Strings H#¥¥x

=> Basic String functionality:

Value of firstName: Freddy

firstName has 6 characters.

firstName in uppercase: FREDDY
firstName in lowercase: freddy
firstName contains the letter y?: True
firstName after replace: Fred

While this output might not seem too surprising, the output seen via calling the Replace() method is a
bit misleading. In reality, the firstName variable has not changed at all; rather, you receive a new stringina
modified format. You will revisit the immutable nature of strings in just a few moments.

String Concatenation

string variables can be connected to build larger strings via the C# + (as well as +=) operator. As you might
know, this technique is formally termed string concatenation. Consider the following new helper function:

static void StringConcatenation()

{

Console.WriteLine("=> String concatenation:");

string s1 = "Programming the ";

80

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

string s2 = "PsychoDrill (PTP)";
string s3 = s1 + s2;
Console.Writeline(s3);
Console.Writeline();

You might be interested to know that the C# + symbol is processed by the compiler to emit a call to
the static String.Concat() method. Given this, it is possible to perform string concatenation by calling
String.Concat() directly (although you really have not gained anything by doing so—in fact, you have
incurred additional keystrokes!).

static void StringConcatenation()

{

Console.WriteLine("=> String concatenation:");
string s1 = "Programming the ";
string s2 = "PsychoDrill (PTP)";
string s3 = String.Concat(s1, s2);
Console.WritelLine(s3);
Console.WritelLine();

Escape Characters

As in other C-based languages, C# string literals may contain various escape characters, which qualify how
the character data should be printed to the output stream. Each escape character begins with a backslash,
followed by a specific token. In case you are a bit rusty on the meanings behind these escape characters,
Table 3-6 lists the more common options.

Table 3-6. String Literal Escape Characters

Character Meaning in Life

\' Inserts a single quote into a string literal.

\" Inserts a double quote into a string literal.

\\ Inserts a backslash into a string literal. This can be quite helpful when defining file or
network paths.

\a Triggers a system alert (beep). For console programs, this can be an audio clue to the user.

\n Inserts a new line (on Windows platforms).

\1r Inserts a carriage return.

\t Inserts a horizontal tab into the string literal.

For example, to print a string that contains a tab between each word, you can make use of the \t escape
character. Or assume you want to create a string literal that contains quotation marks, another that defines a
directory path, and a final string literal that inserts three blank lines after printing the character data.

To do so without compiler errors, you would need to make use of the \", \\, and \n escape characters.

81

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Also, to annoy any person within a 10-foot radius from you, notice that I have embedded an alarm within
each string literal (to trigger a beep). Consider the following:

static void EscapeChars()

{
Console.WriteLine("=> Escape characters:\a");
string strWithTabs = "Model\tColor\tSpeed\tPet Name\a ";
Console.WritelLine(strhWithTabs);

Console.WriteLine("Everyone loves \"Hello World\"\a ");
Console.WriteLine("C:\\MyApp\\bin\\Debug\a ");

// Adds a total of 4 blank lines (then beep again!).
Console.WritelLine("All finished.\n\n\n\a ");
Console.WriteLine();

Defining Verbatim Strings

When you prefix a string literal with the @ symbol, you have created what is termed a verbatim string. Using

verbatim strings, you disable the processing of a literal’s escape characters and print out a string as is. This
can be most useful when working with strings representing directory and network paths. Therefore, rather
than making use of \\ escape characters, you can simply write the following:

// The following string is printed verbatim,
// thus all escape characters are displayed.
Console.WritelLine(@"C:\MyApp\bin\Debug");

Also note that verbatim strings can be used to preserve white space for strings that flow over
multiple lines.

// White space is preserved with verbatim strings.
string mylLongString = @"This is a very
very
very
long string";
Console.WritelLine(myLongString);

Using verbatim strings, you can also directly insert a double quote into a literal string by doubling
the " token.

Console.WriteLine(@"Cerebus said ""Darrr! Pret-ty sun-sets""");

Strings and Equality

As fully explained in Chapter 4, a reference type is an object allocated on the garbage-collected managed
heap. By default, when you perform a test for equality on reference types (via the C# == and ! = operators),
you will be returned true if the references are pointing to the same object in memory. However, even though
the string data type is indeed a reference type, the equality operators have been redefined to compare the
values of string objects, not the object in memory to which they refer.

82

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

static void StringEquality()

{
Console.WriteLine("=> String equality:");
string s1 = "Hello!";
string s2 = "Yo!";
Console.WritelLine("s1 = {0}", s1);
Console.WritelLine("s2 = {0}", s2);
Console.WritelLine();

// Test these strings for equality.
Console.Writeline("s1 == s2: {0}", s1 == s2);

Console.WriteLine("s1 == Hello!: {0}", s1 == "Hello!");
Console.WriteLine("s1 == HELLO!: {0}", s1 == "HELLO!");
Console.Writeline("s1 == hello!: {0}", s1 == "hello!");

Console.WriteLine("s1.Equals(s2): {0}", si.Equals(s2));
Console.WriteLine("Yo.Equals(s2): {0}", "Yo!".Equals(s2));
Console.WriteLine();

The C# equality operators by default perform a case-sensitive, culture-insensitive, character-by-
character equality test on string objects. Therefore, "Hello!" is not equal to "HELLO!", which is also
different from "hello!". Also, keeping the connection between string and System. String in mind, notice
that you are able to test for equality using the Equals () method of String as well as the baked-in equality
operators. Finally, given that every string literal (such as "Yo") is a valid System. String instance, you are
able to access string-centric functionality from a fixed sequence of characters.

Modifying String Comparison Behavior

As mentioned, the string equality operators (Compare(), Equals(), and ==) as well as the Index0f () function
are by default case-sensitive and culture-insensitive. This can cause a problem if your program doesn’t care
about case. One way to overcome this is to convert everything to uppercase or lowercase and then compare,
like this:

if (firstString.ToUpper() == secondString.ToUpper())
{
//Do something

}

This makes a copy of each string with all lowercase letters. It’s probably not an issue in most cases but
could be a performance hit with a significantly large string. Even if it's not a performance issue, it is a bit of
a pain to write each time. And what if you forget to call ToUpper ()? That could lead to a hard-to-find bug in
your program.

A much better practice is to use the overloads of the methods listed earlier that take a value of the
StringComparison enumeration to control exactly how the comparisons are done. Table 3-7 describes the
StringComparison values.

83

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Table 3-7. Values of the StringComparison Enumeration

C# Equality/Relational Operator Meaning in Life

CurrentCulture Compares strings using culture-sensitive sort rules and the current
culture

CurrentCultureIgnoreCase Compares strings using culture-sensitive sort rules and the current
culture and ignores the case of the strings being compared

InvariantCulture Compares strings using culture-sensitive sort rules and the invariant
culture

InvariantCultureIgnoreCase Compares strings using culture-sensitive sort rules and the invariant
culture and ignores the case of the strings being compared

Ordinal Compares strings using ordinal (binary) sort rules

OrdinalIgnoreCare Compares strings using ordinal (binary) sort rules and ignores the case

of the strings being compared

The see the effect of using the StringComparison option, create a new method named

StringEqualitySpecifyingCompareRules() and add the following code:

static void StringEqualitySpecifyingCompareRules()

{

Console.WriteLine("=> String equality (Case Insensitive:");
string s1 = "Hello!";
string s2 = "HELLO!";
Console.WritelLine("s1
Console.WritelLine("s2
Console.Writeline();

{o}", s1);
{0}", s2);

// Check the results of changing the default compare rules.
Console.WritelLine("Default rules: si={0},s2={1}s1.Equals(s2): {2}", si1, s2,
s1.Equals(s2));
Console.WriteLine("Ignore case: si.Equals(s2, StringComparison.OrdinallgnoreCase): {0}",
s1.Equals(s2, StringComparison.OrdinalIgnoreCase));
Console.WritelLine("Ignore case, Invarariant Culture: si.Equals(s2, StringComparison.
InvariantCultureIgnoreCase): {0}",
s1.Equals(s2, StringComparison.InvariantCultureIgnoreCase));
Console.WritelLine();
Console.WritelLine("Default rules: si={0},s2={1} s1.IndexOf(\"E\"): {2}", s1, s2,
s1.IndexOf("E"));
Console.WritelLine("Ignore case: si.IndexOf(\"E\", StringComparison.OrdinalIgnoreCase):
{0}", si.IndexOf("E",
StringComparison.OrdinalIgnoreCase));
Console.WriteLine("Ignore case, Invarariant Culture: si.IndexOf(\"E\", StringComparison.
InvariantCultureIgnoreCase): {0}",
s1.IndexOf("E", StringComparison.InvariantCultureIgnoreCase));
Console.Writeline();

84

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

While the examples here are simple ones and use the same letters across most cultures, if your
application needed to take into account different culture sets, using the StringComparison options is a must.

Strings Are Immutable

One of the interesting aspects of System. String is that after you assign a string object with its initial value,
the character data cannot be changed. At first glance, this might seem like a flat-out lie, given that you are
always reassigning strings to new values and because the System.String type defines a number of methods
that appear to modify the character data in one way or another (such as uppercasing and lowercasing).
However, if you look more closely at what is happening behind the scenes, you will notice the methods of the
string type are, in fact, returning you a new string object in a modified format.

static void StringsAreImmutable()

{
// Set initial string value.
string s1 = "This is my string.";
Console.WritelLine("s1 = {0}", s1);

// Uppercase s1?
string upperString = si.ToUpper();
Console.WriteLine("upperString = {0}", upperString);

// Nope! s1 is in the same format!
Console.WritelLine("s1 = {0}", s1);

If you examine the relevant output that follows, you can verify that the original string object (s1) is not
uppercased when calling ToUpper (). Rather, you are returned a copy of the string in a modified format.

s1 = This is my string.
upperString = THIS IS MY STRING.
s1 = This is my string.

The same law of immutability holds true when you use the C# assignment operator. To illustrate,
implement the following StringsAreImmutable2() method:

static void StringsAreImmutable2()

{
string s2 = "My other string";
s2 = "New string value";

}

85

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Now, compile your application and load the assembly into i1dasm.exe (see Chapter 1). The following
output shows what you would find if you were to generate CIL code for the StringsAreImmutable2()
method:

.method private hidebysig static void StringsAreImmutable2() cil managed
{

// Code size 14 (Oxe)

.maxstack 1

.locals init ([0] string s2)

IL_0000: nop

IL_0001: ldstr "My other string"
IL 0006: stloc.o

IL 0007: ldstr "New string value"
IL_oooc: stloc.o

IL_oood: ret

} // end of method Program::StringAreImmutable2

Although you have yet to examine the low-level details of the CIL, note the numerous calls to the 1dstr
(load string) opcode. Simply put, the 1dstr opcode of the CIL loads a new string object on the managed
heap. The previous string object that contained the value "My other string" will eventually be garbage
collected.

So, what exactly are you to gather from this insight? In a nutshell, the string class can be inefficient and
result in bloated code if misused, especially when performing string concatenation or working with huge
amounts of text data. If you need to represent basic character data such as a U.S. Social Security number, first
or last names, or simple bits of text used within your application, the string class is the perfect choice.

However, if you are building an application that makes heavy use of frequently changing textual data
(such as a word processing program), it would be a bad idea to represent the word processing data using
string objects, as you will most certainly (and often indirectly) end up making unnecessary copies of string
data. So, what is a programmer to do? Glad you asked.

The System.Text.StringBuilder Type

Given that the string type can be inefficient when used with reckless abandon, the .NET base class

libraries provide the System.Text namespace. Within this (relatively small) namespace lives a class named
StringBuilder. Like the System.String class, the StringBuilder defines methods that allow you to replace
or format segments, for example. When you want to use this type in your C# code files, your first step is to
make sure the following namespace is imported into your code file (this should already be the case for a new
Visual Studio project):

// StringBuilder lives here!
using System.Text;

What is unique about the StringBuilder is that when you call members of this type, you are directly
modifying the object’s internal character data (making it more efficient), not obtaining a copy of the data in
a modified format. When you create an instance of the StringBuilder, you can supply the object’s initial
startup values via one of many constructors. If you are new to the topic of constructors, simply understand

86

http://dx.doi.org/10.1007/978-1-4842-3018-3_1

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

that constructors allow you to create an object with an initial state when you apply the new keyword.
Consider the following usage of StringBuilder:

static void FunWithStringBuilder()

{
Console.Writeline("=> Using the StringBuilder:");
StringBuilder sb = new StringBuilder("**** Fantastic Games ****");
sb.Append("\n");
sb.AppendLine("Half Life");
sb.AppendLine("Morrowind");
sb.AppendLine("Deus Ex" + "2");
sb.AppendLine("System Shock");
Console.WriteLine(sb.ToString());
sb.Replace("2", " Invisible War");
Console.WriteLine(sb.ToString());
Console.WriteLine("sb has {0} chars.", sb.Length);
Console.WritelLine();

Here, [have constructed a StringBuilder set to the initial value "**** Fantastic Games ****".Asyou
can see, [am appending to the internal buffer and am able to replace or remove characters at will. By default,
a StringBuilder is only able to initially hold a string of 16 characters or fewer (but will expand automatically
if necessary); however, this default starting value can be changed via an additional constructor argument.

// Make a StringBuilder with an initial size of 256.
StringBuilder sb = new StringBuilder("**** Fantastic Games ****" 256);

If you append more characters than the specified limit, the StringBuilder object will copy its data into
a new instance and grow the buffer by the specified limit.

String Interpolation

The curly bracket syntax illustrated within this chapter ({0}, {1}, and so on) has existed within the .NET
platform since version 1.0. Starting with the release of C# 6, C# programmers can use an alternative syntax to
build string literals that contain placeholders for variables. Formally, this is called string interpolation. While
the output of the operation is identical to traditional string formatting syntax, this new approach allows you
to directly embed the variables themselves, rather than tacking them on as a comma-delimited list.

Consider the following additional method of your Program class (StringInterpolation()), which
builds a string variable using each approach:

static void StringInterpolation()
{

// Some local variables we will plug into our larger string
int age = 4;
string name = "Soren";

// Using curly bracket syntax.
string greeting = string.Format("Hello {0} you are {1} years old.", name, age);

// Using string interpolation
string greeting2 = $"Hello {name} you are {age} years old.";

87

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

In the greeting2 variable, notice how the string you are constructing begins with a dollar sign ($) prefix.
Next, notice that the curly brackets still are used to mark a variable placeholder; however, rather than using
a numerical tag, you are able to place the variable directly into the scope. The assumed advantage is that this
new formatting syntax is a bit easier to read in a linear (left-to-right) fashion, given that you are not required
to “jump to the end” to see the list of values to plug in at runtime.

There is another interesting aspect of this new syntax: the curly brackets used in string interpolation
are a valid scope. Therefore, you can use the dot operation on the variables to change their state. Consider
updates to each assembled string variable.

string greeting = string.Format("Hello {0} you are {1} years old.", name.ToUpper(), age);
string greeting2 = $"Hello {name.ToUpper()} you are {age} years old.";

Here, I have uppercased the name via a call to ToUpper (). Do note that in the string interpolation
approach, you do not add a semicolon terminator when calling this method. Given this, you cannot use the
curly-bracket scope as a fully blown method scope that contains numerous lines of executable code. Rather,
you can invoke a single member on the object using the dot operator as well as define a simple general
expression such as {age += 1}.

It is also worth noting that you can still use escape characters in the string literal within this new syntax.
Thus, if you wanted to insert a tab, you can prefix a \t token as so:

string greeting = string.Format("\tHello {0} you are {1} years old.", name.ToUpper(), age);
string greeting2 = $"\tHello {name.ToUpper()} you are {age} years old.";

As you might expect, you are free to use either approach when building your string variables on the fly.
Do keep in mind, however, that if you are using an earlier version of the .NET platform, string interpolation
syntax will result in a compiler error. Thus, if you need to ensure your C# code will compile under multiple
versions of the compiler, it is safer to stick to the traditional numerical placeholder approach.

Source Code You can find the FunWithStrings project in the Chapter 3 subdirectory.

Narrowing and Widening Data Type Conversions

Now that you understand how to work with intrinsic C# data types, let’s examine the related topic of data
type conversion. Assume you have a new Console Application project named TypeConversions that defines
the following class:

class Program

{

static void Main(string[] args)

{
Console.WriteLine("***** Fun with type conversions *®¥¥*");
// Add two shorts and print the result.
short numbi = 9, numb2 = 10;
Console.WritelLine("{0} + {1} = {2}",

numbl, numb2, Add(numbi, numb2));

Console.ReadLine();

}

88

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

static int Add(int x, int y)
{
return x + y;
}
}

Notice that the Add() method expects to be sent two int parameters. However, the Main() method is, in
fact, sending in two short variables. While this might seem like a complete and total mismatch of data types,
the program compiles and executes without error, returning the expected result of 19.

The reason the compiler treats this code as syntactically sound is because there is no possibility for
loss of data. Given that the maximum value of a short (32,767) is well within the maximum range of an int
(2,147,483,647), the compiler implicitly widens each short to an int. Formally speaking, widening is the
term used to define an implicit upward cast that does not result in a loss of data.

Note Look up “Type Conversion Tables” in the .NET Framework 4.7 SDK documentation if you want to see
permissible widening (and narrowing, discussed next) conversions for each C# data type.

Although this implicit widening worked in your favor for the previous example, other times this
“feature” can be the source of compile-time errors. For example, assume you have set values to numb1 and
numb2 that (when added together) overflow the maximum value of a short. Also, assume you are storing the
return value of the Add() method within a new local short variable, rather than directly printing the result to
the console.

static void Main(string[] args)

{

Console.Writeline("***** Fun with type conversions **¥**");

// Compiler error below!
short numb1 = 30000, numb2 = 30000;
short answer = Add(numbi, numb2);

Console.WritelLine("{0} + {1} = {2}",
numb1, numb2, answer);
Console.ReadLine();

In this case, the compiler reports the following error:

Cannot implicitly convert type 'int' to 'short'. An explicit conversion exists (are you
missing a cast?)

The problem is that although the Add() method is capable of returning an int with the value 60,000
(as this fits within the range of a System.Int32), the value cannot be stored in a short, as it overflows the
bounds of this data type. Formally speaking, the CLR was unable to apply a narrowing operation. As you can
guess, narrowing is the logical opposite of widening, in that a larger value is stored within a smaller data type
variable.

89

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

It is important to point out that all narrowing conversions result in a compiler error, even when you can
reason that the narrowing conversion should indeed succeed. For example, the following code also results in
a compiler error:

// Another compiler error!
static void NarrowingAttempt()
{

byte myByte = 0;

int myInt = 200;

myByte = myInt;

Console.WriteLine("Value of myByte: {0}", myByte);

Here, the value contained within the int variable (myInt) is safely within the range of a byte; therefore,
you would expect the narrowing operation to not result in a runtime error. However, given that C# is a
language built with type safety in mind, you do indeed receive a compiler error.

When you want to inform the compiler that you are willing to deal with a possible loss of data because
of a narrowing operation, you must apply an explicit cast using the C# casting operator, (). Consider the
following update to the Program type:

class Program

{

static void Main(string[] args)

{

Console.WriteLine("***** Fun with type conversions **¥**");
short numb1 = 30000, numb2 = 30000;

// Explicitly cast the int into a short (and allow loss of data).
short answer = (short)Add(numb1, numb2);

Console.WriteLine("{0} + {1} = {2}",
numbl, numb2, answer);

NarrowingAttempt();

Console.ReadlLine();

static int Add(int x, int y)
{

}

return x + y;

static void NarrowingAttempt()

{
byte myByte = 0;
int myInt = 200;

// Explicitly cast the int into a byte (no loss of data).

myByte = (byte)myInt;
Console.WriteLine("Value of myByte: {0}", myByte);

90

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

At this point, the code compiles; however, the result of the addition is completely incorrect.

kkk Fun with type conversions *iokxk
30000 + 30000 = -5536
Value of myByte: 200

Asyou have just witnessed, an explicit cast allows you to force the compiler to apply a narrowing
conversion, even when doing so may result in a loss of data. In the case of the NarrowingAttempt () method,
this was not a problem because the value 200 can fit snuggly within the range of a byte. However, in the
case of adding the two shorts within Main(), the end result is completely unacceptable (30,000 + 30,000 =
-5536?).

If you are building an application where loss of data is always unacceptable, C# provides the checked
and unchecked keywords to ensure data loss does not escape undetected.

The checked Keyword

Let’s begin by learning the role of the checked keyword. Assume you have a new method within Program that
attempts to add two bytes, each of which has been assigned a value that is safely below the maximum (255).
If you were to add the values of these types (casting the returned int to a byte), you would assume that the
result would be the exact sum of each member.

static void ProcessBytes()
{
byte b1 = 100;
byte b2 = 250;
byte sum = (byte)Add(b1, b2);

// sum should hold the value 350. However, we find the value 94!
Console.WriteLine("sum = {0}", sum);

If you were to view the output of this application, you might be surprised to find that sum contains the
value 94 (rather than the expected 350). The reason is simple. Given that a System.Byte can hold a value
only between 0 and 255 (inclusive, for a grand total of 256 slots), sum now contains the overflow value
(350 - 256 = 94). By default, if you take no corrective course of action, overflow/underflow conditions occur
without error.

To handle overflow or underflow conditions in your application, you have two options. Your first choice
is to leverage your wits and programming skills to handle all overflow/underflow conditions manually. Of
course, the problem with this technique is the simple fact that you are human, and even your best attempts
might result in errors that have escaped your eyes.

Thankfully, C# provides the checked keyword. When you wrap a statement (or a block of statements)
within the scope of the checked keyword, the C# compiler emits additional CIL instructions that test for
overflow conditions that may result when adding, multiplying, subtracting, or dividing two numerical data

types.

91

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

If an overflow has occurred, you will receive a runtime exception: System.OverflowException.
Chapter 7 will examine all the details of structured exception handling and the use of the try and catch
keywords. Without getting too hung up on the specifics at this point, observe the following update:

static void ProcessBytes()
{
byte b1
byte b2

100;
250;

// This time, tell the compiler to add CIL code
// to throw an exception if overflow/underflow
// takes place.
try
{
byte sum = checked((byte)Add(b1, b2));
Console.WritelLine("sum = {0}", sum);

catch (OverflowException ex)

{

Console.WritelLine(ex.Message);

}
}

Notice that the return value of Add() has been wrapped within the scope of the checked keyword.
Because the sum is greater than a byte, this triggers a runtime exception. Notice the error message printed
out via the Message property.

Arithmetic operation resulted in an overflow.

If you want to force overflow checking to occur over a block of code statements, you can do so by
defining a “checked scope” as follows:

try
{

checked

{
byte sum = (byte)Add(b1, b2);
Console.WriteLine("sum = {0}", sum);

}
}

catch (OverflowException ex)

{
}

Console.WriteLine(ex.Message);

In either case, the code in question will be evaluated for possible overflow conditions automatically,
which will trigger an overflow exception if encountered.

92

http://dx.doi.org/10.1007/978-1-4842-3018-3_7

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Setting Project-wide Overflow Checking

If you are creating an application that should never allow silent overflow to occur, you might find yourself in
the annoying position of wrapping numerous lines of code within the scope of the checked keyword. As an
alternative, the C# compiler supports the /checked flag. When enabled, all your arithmetic will be evaluated
for overflow without the need to make use of the C# checked keyword. If overflow has been discovered, you
will still receive a runtime exception.

To enable this flag using Visual Studio, open your project’s property page and click the Advanced button
on the Build tab. From the resulting dialog box, select the “Check for arithmetic overflow/underflow” check
box (see Figure 3-4).

Advanced Build Settings ? X
General
Language version: default -
Internal compiler error reporting: prompt >

.Check for arithmetic overflow/underﬂow.

Output

Debugging information: full b
File alignment: 512 v
Library base address: 0x00400000

Cancel

Figure 3-4. Enabling project-wide overflow/underflow data checking

Enabling this setting can be helpful when you're creating a debug build. After all the overflow
exceptions have been squashed out of the codebase, you're free to disable the /checked flag for subsequent
builds (which can increase the runtime performance of your application).

The unchecked Keyword

Now, assuming you have enabled this project-wide setting, what are you to do if you have a block of code
where data loss is acceptable? Given that the /checked flag will evaluate all arithmetic logic, C# provides
the unchecked keyword to disable the throwing of an overflow exception on a case-by-case basis. This

keyword’s use is identical to that of the checked keyword in that you can specify a single statement or a block
of statements.

// Assuming /checked is enabled,

// this block will not trigger

// a runtime exception.

unchecked

{
byte sum = (byte)(b1 + b2);
Console.WriteLine("sum = {0} ", sum);

}

93

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

So, to summarize the C# checked and unchecked keywords, remember that the default behavior
of the .NET runtime is to ignore arithmetic overflow/underflow. When you want to selectively handle
discrete statements, make use of the checked keyword. If you want to trap overflow errors throughout your
application, enable the /checked flag. Finally, the unchecked keyword can be used if you have a block of
code where overflow is acceptable (and thus should not trigger a runtime exception).

Source Code You can find the TypeConversions project in the Chapter 3 subdirectory.

Understanding Implicitly Typed Local Variables

Up until this point in the chapter, when you have been defining local variables, you've explicitly specified the
underlying data type of each variable being declared.

static void DeclareExplicitVars()
{
/71 Explicitly typed local variables
// are declared as follows:
// dataType variableName = initialValue;
int myInt = 0;
bool myBool = true;
string myString = "Time, marches on...";

While many (including yours truly) would argue that it is always good practice to explicitly specify the
data type of each variable, the C# language does provide for implicitly typing of local variables using the
var keyword. The var keyword can be used in place of specifying a specific data type (such as int, bool, or
string). When you do so, the compiler will automatically infer the underlying data type based on the initial
value used to initialize the local data point.

To illustrate the role of implicit typing, create a new Console Application project named
ImplicitlyTypedLocalVars. Notice how the local variables within the previous method can now be declared
as follows:

static void DeclareImplicitVars()

{
// Implicitly typed local variables
/1 are declared as follows:
// var variableName = initialValue;
var myInt = 0O;
var myBool = true;
var myString = "Time, marches on...";

Note Strictly speaking, var is not a C# keyword. It is permissible to declare variables, parameters, and
fields named var without compile-time errors. However, when the var token is used as a data type, it is
contextually treated as a keyword by the compiler.

94

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

In this case, the compiler is able to infer, given the initially assigned value, that myInt is, in fact, a
System.Int32, myBool is a System.Boolean, and myString is indeed of type System.String. You can verify
this by printing the type name via reflection. As you will see in much more detail in Chapter 15, reflection is
the act of determining the composition of a type at runtime. For example, using reflection, you can determine
the data type of an implicitly typed local variable. Update your method with the following code statements:

static void DeclareImplicitVars()
{
// Implicitly typed local variables.
var myInt = 0;
var myBool = true;
var myString = "Time, marches on...";

// Print out the underlying type.

Console.WriteLine("myInt is a: {0}", myInt.GetType().Name);
Console.WriteLine("myBool is a: {0}", myBool.GetType().Name);
Console.WriteLine("myString is a: {0}", myString.GetType().Name);

Note Be aware that you can use this implicit typing for any type including arrays, generic types (see
Chapter 9), and your own custom types. You'll see other examples of implicit typing over the course of this book.

If you were to call the DeclareImplicitVars() method from within Main(), you'd find the output
shown here:

FRERE Fun with Implicit Typing *¥tex

myInt is a: Int32
myBool is a: Boolean
myString is a: String

Restrictions on Implicitly Typed Variables

There are various restrictions regarding the use of the var keyword. First, implicit typing applies only to
local variables in a method or property scope. It is illegal to use the var keyword to define return values,
parameters, or field data of a custom type. For example, the following class definition will result in various
compile-time errors:

class ThisWillNeverCompile

{

// Exrroxr! var cannot be used as field data!
private var myInt = 10;

// Exrox! var cannot be used as a return value

// or parameter type!
public var MyMethod(var x, var y){}

95

http://dx.doi.org/10.1007/978-1-4842-3018-3_15
http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Also, local variables declared with the var keyword must be assigned an initial value at the exact time of
declaration and cannot be assigned the initial value of null. This last restriction should make sense, given that
the compiler cannot infer what sort of type in memory the variable would be pointing to based only on null.

// Error! Must assign a value!
var myData;

// Error! Must assign value at exact time of declaration!
var myInt;
myInt = 0;

// Error! Can't assign null as initial value!
var myObj = null;

It is permissible, however, to assign an inferred local variable to null after its initial assignment
(provided it is a reference type).

// 0K, if SportsCar is a reference type!
var myCar = new SportsCar();
myCar = null;

Furthermore, it is permissible to assign the value of an implicitly typed local variable to the value of
other variables, implicitly typed or not.

// Also OK!
var myInt = 0;
var anotherInt = myInt;

string myString = "Wake up!";
var myData = myString;

Also, it is permissible to return an implicitly typed local variable to the caller, provided the method
return type is the same underlying type as the var-defined data point.

static int GetAnInt()
{
var retVal = 9;
return retVal;

}

Implicit Typed Data Is Strongly Typed Data

Be aware that implicit typing of local variables results in strongly typed data. Therefore, use of the var
keyword is not the same technique used with scripting languages (such as JavaScript or Perl) or the COM
Variant data type, where a variable can hold values of different types over its lifetime in a program (often
termed dynamic typing).

Note C# does allow for dynamic typing in C# using a keyword called—surprise, surprise—dynamic. You
will learn about this aspect of the language in Chapter 16.

96

http://dx.doi.org/10.1007/978-1-4842-3018-3_16

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Rather, type inference keeps the strongly typed aspect of the C# language and affects only the
declaration of variables at compile time. After that, the data point is treated as if it were declared with that
type; assigning a value of a different type into that variable will result in a compile-time error.

static void ImplicitTypingIsStrongTyping()

{
// The compiler knows "s" is a System.String.
var s = "This variable can only hold string data!";
s = "This is fine...";

// Can invoke any member of the underlying type.
string upper = s.ToUpper();

// Error! Can't assign numerical data to a string!
s = 44;
}

Usefulness of Implicitly Typed Local Variables

Now that you have seen the syntax used to declare implicitly typed local variables, I am sure you are
wondering when to make use of this construct. First, using var to declare local variables simply for the
sake of doing so brings little to the table. Doing so can be confusing to others reading your code because it
becomes harder to quickly determine the underlying data type and, therefore, more difficult to understand
the overall functionality of the variable. So, if you know you need an int, declare an int!

However, as you will see beginning in Chapter 12, the LINQ technology set makes use of query
expressions that can yield dynamically created result sets based on the format of the query itself. In these
cases, implicit typing is extremely helpful because you do not need to explicitly define the type that a
query may return, which in some cases would be literally impossible to do. Without getting hung up on the
following LINQ example code, see whether you can figure out the underlying data type of subset:

static void LinqQueryOverInts()

{

int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

// LINQ query!
var subset = from i in numbers where i < 10 select i;

Console.Write("Values in subset: ");
foreach (var i in subset)

{

Console.Write("{o} ", i);

}

Console.Writeline();
// Hmm...what type is subset?

Console.WriteLine("subset is a: {0}", subset.GetType().Name);
Console.WriteLine("subset is defined in: {0}", subset.GetType().Namespace);

97

http://dx.doi.org/10.1007/978-1-4842-3018-3_12

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

You might be assuming that the subset data type is an array of integers. That seems to be the case, but,
in fact, it is a low-level LINQ data type that you would never know about unless you have been doing LINQ
for a long time or you open the compiled image in ildasm.exe. The good news is that when you are using
LINQ, you seldom (if ever) care about the underlying type of the query’s return value; you will simply assign
the value to an implicitly typed local variable.

In fact, it could be argued that the only time you would make use of the var keyword is when defining
data returned from a LINQ query. Remember, if you know you need an int, just declare an int! Overuse of
implicit typing (via the var keyword) is considered by most developers to be poor style in production code.

Source Code You can find the ImplicitlyTypedLocalVars project in the Chapter 3 subdirectory.

C# Iteration Constructs

All programming languages provide ways to repeat blocks of code until a terminating condition has been
met. Regardless of which language you have used in the past, I would guess the C# iteration statements
should not raise too many eyebrows and should require little explanation. C# provides the following four
iteration constructs:

e forloop

e foreach/inloop
e whileloop

e do/whileloop

Let’s quickly examine each looping construct in turn, using a new Console Application project named
IterationsAndDecisions.

Note | will keep this section of the chapter short and to the point, as | am assuming you have experience
using similar keywords (if, for, switch, etc.) in your current programming language. If you require more
information, look up the topics “lteration Statements (C# Reference),” “Jump Statements (C# Reference),” and
“Selection Statements (C# Reference)” within the .NET Framework 4.7 SDK documentation.

The for Loop

When you need to iterate over a block of code a fixed number of times, the for statement provides a good
deal of flexibility. In essence, you are able to specify how many times a block of code repeats itself, as well as
the terminating condition. Without belaboring the point, here is a sample of the syntax:

// A basic for loop.
static void ForLoopExample()

{
// Note! "i" is only visible within the scope of the for loop.
for(int i = 0; 1 < 4; i++)

98

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

{

Console.WriteLine("Number is: {0} ", i);
}
// "i" is not visible here.

}

All'your old C, C++, and Java tricks still hold when building a C# for statement. You can create complex
terminating conditions, build endless loops, loop in reverse (via the - - operator), and use the goto,
continue, and break jump keywords.

The foreach Loop

The C# foreach keyword allows you to iterate over all items in a container without the need to test for an
upper limit. Unlike a for loop, however, the foreach loop will walk the container only in a linear (n+1)
fashion (thus, you cannot go backward through the container, skip every third element, or whatnot).
However, when you simply need to walk a collection item by item, the foreach loop is the perfect
choice. Here are two examples using foreach—one to traverse an array of strings and the other to traverse an
array of integers. Notice that the data type before the in keyword represents the type of data in the container.

// Iterate array items using foreach.
static void ForEachLoopExample()
{
string[] carTypes = {"Ford", "BMW", "Yugo", "Honda" };
foreach (string c in carTypes)
Console.WritelLine(c);

int[] myInts = { 10, 20, 30, 40 };
foreach (int i in myInts)
Console.Writeline(i);

}

The item after the in keyword can be a simple array (seen here) or, more specifically, any class
implementing the IEnumerable interface. As you will see in Chapter 9, the .NET base class libraries ship with
anumber of collections that contain implementations of common abstract data types (ADTs). Any of these
items (such as the generic List<T>) can be used within a foreach loop.

Use of Implicit Typing Within foreach Constructs

It is also possible to use implicit typing within a foreach looping construct. As you would expect, the
compiler will correctly infer the correct “type of type.” Recall the LINQ example method shown earlier in
this chapter. Given that you don’t know the exact underlying data type of the subset variable, you can iterate
over the result set using implicit typing.

static void LinqQueryOverInts()

{

int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };
// LINQ query!

var subset = from i in numbers where i < 10 select i;
Console.Write("Values in subset: ");

99

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

foreach (var i in subset)

{

}
}

Console.Write("{o} ", i);

The while and do/while Looping Constructs

The while looping construct is useful should you want to execute a block of statements until some
terminating condition has been reached. Within the scope of awhile loop, you will need to ensure this
terminating event is indeed established; otherwise, you will be stuck in an endless loop. In the following
example, the message "In while loop" will be continuously printed until the user terminates the loop by
entering yes at the command prompt:

static void WhilelLoopExample()
{

string userIsDone = "";

// Test on a lower-class copy of the string.

while(userIsDone.ToLower() != "yes")

{
Console.WriteLine("In while loop");
Console.Write("Are you done? [yes] [no]: ");
userIsDone = Console.ReadlLine();

}

}

Closely related to the while loop is the do/while statement. Like a simple while loop, do/while is used
when you need to perform some action an undetermined number of times. The difference is that do/while
loops are guaranteed to execute the corresponding block of code at least once. In contrast, it is possible that
a simple while loop may never execute if the terminating condition is false from the onset.

static void DoWhilelLoopExample()

{
string userIsDone = "";
do
{
Console.WriteLine("In do/while loop");
Console.Write("Are you done? [yes] [no]: ");
userIsDone = Console.ReadlLine();
}while(userIsDone.ToLower() != "yes"); // Note the semicolon!
}

100

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Decision Constructs and the Relational/Equality Operators

Now that you can iterate over a block of statements, the next related concept is how to control the flow of
program execution. C# defines two simple constructs to alter the flow of your program, based on various
contingencies.

e The if/else statement

e The switch statement

Note C# 7 extends the is expression and switch statements with a technique called pattern matching.
Both of these extensions and how these changes affect if/else and switch statements will be addressed in
Chapter 6 after covering base class/derived class rules, casting, and the standard is operator.

The if/else Statement

First up is the if/else statement. Unlike in C and C++, the if/else statement in C# operates only on
Boolean expressions, not ad hoc values such as -1 or 0.

Equality and Relational Operators

C# if/else statements typically involve the use of the C# operators shown in Table 3-8 to obtain a literal
Boolean value.

Table 3-8. C# Relational and Equality Operators

C# Equality/Relational Operator ~ Example Usage Meaning in Life

== if(age == 30) Returns true only if each expression is the
same

I= if("Foo" != myStr) Returns true only if each expression is
different

< if(bonus < 2000) Returns true if expression A (bonus) is less

than, greater than, less than or equal to, or
greater than or equal to expression B (2000)

> if(bonus > 2000)
<= if(bonus <= 2000)
>= if(bonus >= 2000)

101

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

Again, C and C++ programmers need to be aware that the old tricks of testing a condition for a value not
equal to zero will not work in C#. Let’s say you want to see whether the string you are working with is longer
than zero characters. You might be tempted to write this:

static void IfElseExample()
{
// This is illegal, given that Length returns an int, not a bool.
string stringData = "My textual data";
if(stringData.Length)
{

Console.WriteLine("string is greater than 0 characters");

}

else

{
Console.WriteLine("string is not greater than 0 characters");

}

Console.Writeline();

If you want to use the String.Length property to determine truth or falsity, you need to modify your
conditional expression to resolve to a Boolean.

// Legal, as this resolves to either true or false.
If (stringData.Length > 0)
{

Console.WriteLine("string is greater than 0 characters");

}

The Conditional Operator

The conditional operator (?:) is a shorthand method of writing a simple if-else statement. The syntax
works like this:

condition ? first expression : second expression;

The condition is the conditional test (the if part of the if-else statement). If the test passes, then the
code immediately after the question mark (?) is executed. If the test does not evaluate to true, the code after
the colon (the else part of the 1f-else statement) is executed. The previous code example can be written
using the conditional operator like this:

private static void ExecuteIfElseUsingConditionalOperator()
{
string stringData = "My textual data";
Console.Writeline(stringData.Length > 0
? "string is greater than 0 characters"
: "string is not greater than 0 characters");
Console.WritelLine();

}

102

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

There are some restrictions to the conditional operator. First, both types of first_expression and
second_expression must be the same. Second, the conditional operator can be used only in assignment
statements. The following code will result in the compiler error “Only assignment, call, increment,
decrement, and new object expressions can be used as a statement”:

stringData.lLength > 0
? Console.WriteLine("string is greater than 0 characters")
: Console.Writeline("string is not greater than 0 characters");

Logical Operators

An if statement may be composed of complex expressions as well and can contain else statements
to perform more complex testing. The syntax is identical to C (and C++) and Java. To build complex
expressions, C# offers an expected set of logical operators, as shown in Table 3-9.

Table 3-9. C# Logical Operators

Operator Example Meaning in Life

&& if(age == 30 8& name == "Fred") AND operator. Returns true if all expressions are true.

[if(age == 30 || name == "Fred") OR operator. Returns true if at least one expression
is true.

! if(!myBool) NOT operator. Returns true if false, or false if true.

Note The && and || operators both “short-circuit” when necessary. This means that after a complex
expression has been determined to be false, the remaining subexpressions will not be checked. If you require
all expressions to be tested regardless, you can use the related & and | operators.

The switch Statement

The other simple selection construct offered by C# is the switch statement. As in other C-based languages,
the switch statement allows you to handle program flow based on a predefined set of choices. For example,
the following Main() logic prints a specific string message based on one of two possible selections (the
default case handles an invalid selection):

// Switch on a numerical value.
static void SwitchExample()

{
Console.WriteLine("1 [C#], 2 [VB]");

Console.Write("Please pick your language preference: ");

string langChoice = Console.ReadlLine();
int n = int.Parse(langChoice);

103

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

switch (n)
{
case 1:
Console.WriteLine("Good choice, C# is a fine language.");
break;
case 2:
Console.WriteLine("VB: OOP, multithreading, and more!");
break;
default:
Console.WriteLine("Well...good luck with that!");
break;

Note C# demands that each case (including default) that contains executable statements have a
terminating return, break, or goto to avoid falling through to the next statement.

One nice feature of the C# switch statement is that you can evaluate string data in addition to numeric
data. In fact, all version of C# can evaluate char, string, bool, int, long, and enum data types. As you will see
in the next section, C# 7 adds additional capabilities. Here is an updated switch statement that evaluates a
string variable:

static void SwitchOnStringExample()
{
Console.WritelLine("C# or VB");
Console.Write("Please pick your language preference: ");

string langChoice = Console.ReadlLine();
switch (langChoice)

case "C#":
Console.WriteLine("Good choice, C# is a fine language.");
break;

case "VB":
Console.WriteLine("VB: 00P, multithreading and more!");
break;

default:
Console.WriteLine("Well...good luck with that!");
break;

It is also possible to switch on an enumeration data type. As you will see in Chapter 4, the C# enum
keyword allows you to define a custom set of name-value pairs. To whet your appetite, consider the following
final helper function, which performs a switch test on the System.DayOfleek enum. You'll notice some
syntax I have not yet examined, but focus on the issue of switching over the enum itself; the missing pieces
will be filled in over the chapters to come.

104

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

static void SwitchOnEnumExample()

{
Console.Write("Enter your favorite day of the week: ");
DayOflleek favDay;

try
{
favDay = (DayOfWleek) Enum.Parse(typeof(DayOfWeek), Console.ReadlLine());

}
catch (Exception)

Console.WritelLine("Bad input!");
return;

}

switch (favDay)
{

case DayOfWeek.Sunday:
Console.WritelLine("Football!!");
break;

case DayOfleek.Monday:
Console.WriteLine("Another day, another dollar");
break;

case DayOfleek.Tuesday:
Console.WriteLine("At least it is not Monday");
break;

case DayOflleek.Wednesday:
Console.WriteLine("A fine day.");
break;

case DayOfleek.Thursday:
Console.WriteLine("Almost Friday...");
break;

case DayOfleek.Friday:
Console.WriteLine("Yes, Friday rules!");
break;

case DayOfleek.Saturday:
Console.WriteLine("Great day indeed.");
break;

}

Console.Writeline();

}

Falling through from one case statement to another case statement is not allowed, but what if multiple
case statements should produce the same result? Fortunately, they can be combined, as the following code
snippet demonstrates:

case DayOfleek.Saturday:

case DayOfleek.Saunday:
Console.WritelLine("It’s the weekend!");
break;

105

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

If any code was included between the case statements, the compiler would throw an error. As long as
they are consecutive statements, as shown earlier, case statements can be combined to share common code.

In addition to the return and break statements shown in the previous code samples, the switch
statement also supports using a goto to exit a case condition and execute another case statement. While this
is supported, it’s generally thought of as an anti-pattern and not generally used. Here is an example of using
the goto statement in a switch block:

public static void SwitchWithGoto()
{
var foo = 5;
switch (foo)
{
case 1:
//do something
goto case 2;
case 2:
//do something else
break;
case 3:
//yet another action
goto default;
default:
//default action
break;

Using Pattern Matching in Switch Statements (New)

Prior to C# 7, match expressions in switch statements were limited to comparing a variable to constant
values, sometimes referred to as the constant pattern. In C# 7, switch statements can also employ the type
pattern, where case statements can evaluate the fype of the variable being checked and case expressions are
no longer limited to constant values. The rule that each case statement must be terminated with a return or
break still applies; however, goto statements are not supported using the type pattern.

Note If you are new to object-oriented programming, this section might be a little confusing. It will
all come together in Chapter 6, when you revisit the new pattern matching features of C# 7 in the context
of classes and base classes. For now, just understand that there is a powerful new way to write switch
statements.

Add another method named ExecutePatternMatchingSwitch() and add the following code:

static void ExecutePatternMatchingSwitch()
{
Console.WritelLine("1 [Integer (5)], 2 [String (\"Hi\")], 3 [Decimal (2.5)]");
Console.Write("Please choose an option: ");
string userChoice = Console.ReadlLine();
object choice;

106

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

//This is a standard constant pattern switch statement to set up the example
switch (userChoice)
{
case "1":
choice = 5;
break;
case "2":
choice = "Hi";
break;
case "3":
choice = 2.5;
break;
default:
choice = 5;
break;
}
//This is new the pattern matching switch statement
switch (choice)
{
case int i:
Console.WriteLine("Your choice is an integer.");
break;
case string s:
Console.WriteLine("Your choice is a string.");
break;
case decimal d:
Console.WritelLine("Your choice is a decimal.");
break;
default:
Console.WriteLine("Your choice is something else");
break;

}

Console.Writeline();

}

The first switch statement is using the standard constant pattern and is included merely to set up
this (very trivial) example. In the second switch statement, the variable is typed as object and, based on
the input from the user, can be parsed into an int, string, or decimal data type. Based on the type of the
variable, different case statements are matched. In addition to checking the data type, a variable is assigned
in each of the case statements (except for the default case). Update the code to the following to use the
values in the variables:

//This is new the pattern matching switch statement
switch (choice)

case int 1i:
Console.WriteLine("Your choice is an integer {0}.",i);
break;

case string s:
Console.WriteLine("Your choice is a string. {0}", s);
break;

107

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

case decimal d:
Console.WritelLine("Your choice is a decimal. {0}", d);
break;

default:
Console.WriteLine("Your choice is something else");
break;

In addition to evaluating on the type of the match expression, when clauses can be added to the case
statements to evaluate conditions on the variable. In this example, in addition to checking the type, the value
of the converted type is also checked for a match:

static void ExecutePatternMatchingSwitchWithWhen()

{
Console.WritelLine("1 [C#], 2 [VB]");
Console.Write("Please pick your language preference: ");

object langChoice = Console.ReadLine();
var choice = int.TryParse(langChoice.ToString(), out int c) ? c : langChoice;

switch (choice)
{
case int i when i ==
case string s when s.Equals("VB", StringComparison.OrdinalIgnoreCase):
Console.WriteLine("VB: OOP, multithreading, and more!");
break;
case int i when i ==
case string s when s.Equals("C#", StringComparison.OrdinalIgnoreCase):
Console.WritelLine("Good choice, C# is a fine language.");
break;
default:
Console.WriteLine("Well...good luck with that!");
break;
}

Console.WriteLine();

}

This adds a new dimension to the switch statement as the order of the case statements is now
significant. With the constant pattern, each case statement had to be unique. With the type pattern, this is no
longer the case. For example, the following code will match every integer in the first case statement and will
never execute the second or the third (in fact, the following code will fail to compile):

switch (choice)
{
case int i:
//do something
break;
case int i when i ==
//do something
break;

108

CHAPTER 3 * CORE C# PROGRAMMING CONSTRUCTS, PART |

case int i when i == -1:
// do something
break;

With the initial release of C# 7, there was a small glitch with pattern matching when pattern matching
using generic types. This has been resolved with C# 7.1.

Source Code You can find the IterationsAndDecisions project in the Chapter 3 subdirectory.

Summary

The goal of this chapter was to expose you to numerous core aspects of the C# programming language.
You examined the commonplace constructs in any application you may be interested in building. After
examining the role of an application object, you learned that every C# executable program must have a
type defining a Main() method, which serves as the program’s entry point. Within the scope of Main(), you
typically create any number of objects that work together to breathe life into your application.

Next, you dove into the details of the built-in data types of C# and came to understand that each
data type keyword (e.g., int) is really a shorthand notation for a full-blown type in the System namespace
(System.Int32, in this case). Given this, each C# data type has a number of built-in members. Along the
same vein, you also learned about the role of widening and narrowing, as well as the role of the checked and
unchecked keywords.

The chapter wrapped up by covering the role of implicit typing using the var keyword. As discussed,
the most useful place for implicit typing is when working with the LINQ programming model. Finally, you
quickly examined the various iteration and decision constructs supported by C#.

Now that you have an understanding of some of the basic nuts and bolts, the next chapter (Chapter 4)
will complete your examination of core language features. After that, you will be well prepared to examine
the object-oriented features of C# beginning in Chapter 5.

109

http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 4

Core C# Programming
Constructs, Part Il

This chapter picks up where Chapter 3 left off and completes your investigation of the core aspects of the C#
programming language. You will start with an investigation of the details behind manipulating arrays using
the syntax of C# and get to know the functionality contained within the related System.Array class type.

Next, you will examine various details regarding the construction of C# methods, exploring the out, ref,
and params keywords. Along the way, you will also examine the role of optional and named parameters.

I finish the discussion on methods with a look at method overloading.

Next, this chapter discusses the construction of enumeration and structure types, including a fairly
detailed examination of the distinction between a value type and a reference type. This chapter wraps up by
examining the role of nullable data types and the related operators.

After you have completed this chapter, you will be in a perfect position to learn the object-oriented
capabilities of C#, beginning in Chapter 5.

Understanding C# Arrays

As Iwould guess you are already aware, an array is a set of data items, accessed using a numerical index.
More specifically, an array is a set of contiguous data points of the same type (an array of ints, an array of
strings, an array of SportsCars, and so on). Declaring, filling, and accessing an array with C# are all quite
straightforward. To illustrate, create a new Console Application project named FunWithArrays that contains
a helper method named SimpleArrays(), invoked from within Main().

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Arrays **k*");
SimpleArrays();
Console.ReadLine();

}
static void SimpleArrays()

{
Console.WriteLine("=> Simple Array Creation.");
// Create an array of ints containing 3 elements indexed 0, 1, 2
int[] myInts = new int[3];

© Andrew Troelsen and Philip Japikse 2017 111
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_4

https://doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

// Create a 100 item string array, indexed 0 - 99
string[] booksOnDotNet = new string[100];
Console.Writeline();

}
}

Look closely at the previous code comments. When declaring a C# array using this syntax, the number
used in the array declaration represents the total number of items, not the upper bound. Also note that the
lower bound of an array always begins at 0. Thus, when you write int[] myInts = new int[3], you end up
with an array holding three elements, indexed at positions 0, 1, and 2.

After you have defined an array variable, you are then able to fill the elements index by index, as shown
here in the updated SimpleArrays() method:

static void SimpleArrays()

{
Console.WriteLine("=> Simple Array Creation.");
// Create and fill an array of 3 Integers
int[] myInts = new int[3];
myInts[0] = 100;
myInts[1] = 200;
myInts[2] = 300;

// Now print each value.
foreach(int i in myInts)
Console.WriteLine(i);

Console.Writeline();

Note Do be aware that if you declare an array but do not explicitly fill each index, each item will be set to the
default value of the data type (e.g., an array of bools will be set to false or an array of ints will be set to o).

C# Array Initialization Syntax

In addition to filling an array element by element, you are able to fill the items of an array using C# array
initialization syntax. To do so, specify each array item within the scope of curly brackets ({}). This syntax
can be helpful when you are creating an array of a known size and want to quickly specify the initial values.
For example, consider the following alternative array declarations:

static void ArrayInitialization()

{

Console.WriteLine("=> Array Initialization.");

// Array initialization syntax using the new keyword.
string[] stringArray = new string[]
{ Ilonell, ll_twoll’ llthreell };
Console.WriteLine("stringArray has {0} elements", stringArray.length);

112

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

// Array initialization syntax without using the new keyword.
bool[] boolArray = { false, false, true };
Console.WriteLine("boolArray has {0} elements", boolArray.length);

// Array initialization with new keyword and size.

int[] intArray = new int[4] { 20, 22, 23, 0 };
Console.WriteLine("intArray has {0} elements", intArray.Length);
Console.WritelLine();

Notice that when you make use of this “curly-bracket” syntax, you do not need to specify the size of the
array (seen when constructing the stringArray variable), given that this will be inferred by the number of
items within the scope of the curly brackets. Also notice that the use of the new keyword is optional
(shown when constructing the boolArray type).

In the case of the intArray declaration, again recall the numeric value specified represents the number
of elements in the array, not the value of the upper bound. If there is a mismatch between the declared size
and the number of initializers (whether you have too many or too few initializers), you are issued a compile-
time error. The following is an example:

// 00PS! Mismatch of size and elements!
int[] intArray = new int[2] { 20, 22, 23, 0 };

Implicitly Typed Local Arrays

In Chapter 3, you learned about the topic of implicitly typed local variables. Recall that the var keyword
allows you to define a variable, whose underlying type is determined by the compiler. In a similar vein, the
var keyword can be used to define implicitly typed local arrays. Using this technique, you can allocate a
new array variable without specifying the type contained within the array itself (note you must use the new
keyword when using this approach).

static void DeclareImplicitArrays()

{

Console.WriteLine("=> Implicit Array Initialization.");

// a is really int[].
var a = new[] { 1, 10, 100, 1000 };
Console.WriteLine("a is a: {0}", a.ToString());

// b is really double[].
var b = new[] { 1, 1.5, 2, 2.5 };
Console.WriteLine("b is a: {0}", b.ToString());

// ¢ is really string[].

var ¢ = new[] { "hello", null, "world" };
Console.WriteLine("c is a: {0}", c.ToString());
Console.Writeline();

113

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Of course, just as when you allocate an array using explicit C# syntax, the items in the array’s
initialization list must be of the same underlying type (e.g., all ints, all strings, or all SportsCars). Unlike
what you might be expecting, an implicitly typed local array does not default to System.0Object; thus, the
following generates a compile-time error:

// Error! Mixed types!
var d = new[] { 1, "one", 2, "two", false };

Defining an Array of Objects

In most cases, when you define an array, you do so by specifying the explicit type of item that can be within
the array variable. While this seems quite straightforward, there is one notable twist. As you will come to
understand in Chapter 6, System.0Object is the ultimate base class to every type (including fundamental
data types) in the .NET type system. Given this fact, if you were to define an array of System.0Object data
types, the subitems could be anything at all. Consider the following Array0fObjects() method (which again
can be invoked from Main() for testing):

static void ArrayOfObjects()
{

Console.WriteLine("=> Array of Objects.");

// An array of objects can be anything at all.
object[] myObjects = new object[4];
myObjects[0] = 10;
myObjects[1] = false;
myObjects[2] = new DateTime(1969, 3, 24);
myObjects[3] = "Form & Void";
foreach (object obj in myObjects)
{
// Print the type and value for each item in array.
Console.WriteLine("Type: {0}, Value: {1}", obj.GetType(), obj);
}

Console.WriteLine();

Here, as you are iterating over the contents of myObjects, you print the underlying type of each item
using the GetType() method of System.0Object, as well as the value of the current item. Without going
into too much detail regarding System.0Object.GetType() at this point in the text, simply understand that
this method can be used to obtain the fully qualified name of the item (Chapter 15 examines the topic
of type information and reflection services in detail). The following output shows the result of calling
ArrayOfObjects():

=> Array of Objects.

Type: System.Int32, Value: 10

Type: System.Boolean, Value: False

Type: System.DateTime, Value: 3/24/1969 12:00:00 AM
Type: System.String, Value: Form & Void

114

http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_15

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Working with Multidimensional Arrays

In addition to the single-dimension arrays you have seen thus far, C# also supports two varieties of
multidimensional arrays. The first of these is termed a rectangular array, which is simply an array of multiple
dimensions, where each row is of the same length. To declare and fill a multidimensional rectangular array,
proceed as follows:

static void RectMultidimensionalArray()
{
Console.WritelLine("=> Rectangular multidimensional array.");
// A rectangular MD array.
int[,] myMatrix;
myMatrix = new int[3,4];

// Populate (3 * 4) array.

for(int i = 0; i < 3; i++)
for(int j = 0; j < 4; j++)
myMatrix[i, j] =1 * j;

// Print (3 * 4) array.
for(int i = 0; 1 < 3; i++)

{

for(int j = 0; j < 4; j++)
Console.Write(myMatrix[i, j] + "\t");
Console.WriteLine();

}

Console.Writeline();

The second type of multidimensional array is termed a jagged array. As the name implies, jagged arrays
contain some number of inner arrays, each of which may have a different upper limit. Here’s an example:

static void JaggedMultidimensionalArray()
{
Console.WriteLine("=> Jagged multidimensional array.");
// A jagged MD array (i.e., an array of arrays).
// Here we have an array of 5 different arrays.
int[][] myJagArray = new int[5][];

// Create the jagged array.
for (int i = 0; i < myJagArray.Length; i++)
myJagArray[i] = new int[i + 7];

// Print each row (remember, each element is defaulted to zero!).
for(int i = 0; 1 < 5; i++)
{
for(int j = 0; j < myJagArray[i].Length; j++)
Console.Write(myJagArray[i][j] + " ");
Console.WritelLine();

}

Console.WriteLine();

115

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

The output of calling each of the RectMultidimensionalArray() and JaggedMultidimensionalArray()
methods within Main() is shown next:

=> Rectangular multidimensional array:

0 0 0 0
0 1 2 3
0 2 4 6

=> Jagged multidimensional array:

0000000O0
00000O0OO0O
0000000O0O0
0000000O0O0O
0000000O0OO0OO

Arrays As Arguments or Return Values

After you have created an array, you are free to pass it as an argument or receive it as a member return value.
For example, the following PrintArray() method takes an incoming array of ints and prints each member to
the console, while the GetStringArray() method populates an array of strings and returns it to the caller:

static void PrintArray(int[] myInts)
{
for(int i = 0; i < myInts.Length; i++)
Console.WriteLine("Item {0} is {1}", i, myInts[i]);
}

static string[] GetStringArray()

{
string[] theStrings = {"Hello", "from", "GetStringArray"};
return theStrings;

}

These methods may be invoked as you would expect.

static void PassAndReceiveArrays()
{
Console.WriteLine("=> Arrays as params and return values.");
// Pass array as parameter.
int[] ages = {20, 22, 23, 0} ;
PrintArray(ages);

// Get array as return value.

string[] strs = GetStringArray();

foreach(string s in strs)
Console.WritelLine(s);

Console.WritelLine();

}
116

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

At this point, you should feel comfortable with the process of defining, filling, and examining the
contents of a C# array variable. To complete the picture, let’s now examine the role of the System.Array

class.

The System.Array Base Class

Every array you create gathers much of its functionality from the System.Array class. Using these common
members, you are able to operate on an array using a consistent object model. Table 4-1 gives a rundown of
some of the more interesting members (be sure to check the .NET Framework 4.7 SDK documentation for

full details).

Table 4-1. Select Members of System.Array

Member of Array Class

Meaning in Life

Clear()

CopyTo()

Length
Rank
Reverse()
Sort()

This static method sets a range of elements in the array to empty values
(0 for numbers, null for object references, false for Booleans).

This method is used to copy elements from the source array into the
destination array.

This property returns the number of items within the array.
This property returns the number of dimensions of the current array.
This static method reverses the contents of a one-dimensional array.

This static method sorts a one-dimensional array of intrinsic types. If the
elements in the array implement the IComparer interface, you can also sort
your custom types (see Chapter 9).

Let’s see some of these members in action. The following helper method makes use of the static
Reverse() and Clear () methods to pump out information about an array of string types to the console:

static void SystemArrayFunctionality()

{

Console.WritelLine("=> Working with System.Array.");
// Initialize items at startup.
string[] gothicBands = {"Tones on Tail", "Bauhaus", "Sisters of Mercy"};

// Print out names in declared order.
Console.WriteLine("-> Here is the array:");
for (int i = 0; i < gothicBands.Length; i++)

{

// Print a name.

Console.Write(gothicBands[i] + ", ");

}

Console.WritelLine("\n");

// Reverse them...

Array.Reverse(gothicBands);
Console.WriteLine("-> The reversed array");

117

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

// ... and print them.
for (int i = 0; i < gothicBands.Length; i++)
{
// Print a name.
Console.Write(gothicBands[i] + ", ");

}

Console.WriteLine("\n");

// Clear out all but the first member.
Console.WritelLine("-> Cleared out all but one...");
Array.Clear(gothicBands, 1, 2);

for (int i = 0; i < gothicBands.Length; i++)
{
// Print a name.
Console.Write(gothicBands[i] + ", ");

}

Console.WriteLine();

}

If you invoke this method from within Main(), you will get the output shown here:

=> Working with System.Array.
-> Here is the array:
Tones on Tail, Bauhaus, Sisters of Mercy,

-> The reversed array
Sisters of Mercy, Bauhaus, Tones on Tail,

-> Cleared out all but one...
Sisters of Mercy, , ,

Notice that many members of System.Array are defined as static members and are, therefore, called at
the class level (for example, the Array.Sort() and Array.Reverse() methods). Methods such as these are
passed in the array you want to process. Other members of System.Array (such as the Length property) are
bound at the object level; thus, you are able to invoke the member directly on the array.

Source Code You can find the FunWithArrays application in the Chapter 4 subdirectory.

Methods and Parameter Modifiers

To begin this section, let’s examine the details of defining methods. Just like the Main() method (see Chapter 3),
your custom methods may or may not take parameters and may or may not return values to the caller. As you
will see over the next several chapters, methods can be implemented within the scope of classes or structures
(as well as prototyped within interface types) and may be decorated with various keywords

118

http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

(e.g., static, virtual, public, new) to qualify their behavior. At this point in the text, each of your methods has
followed the following basic format:

// Recall that static methods can be called directly
// without creating a class instance.
class Program

{
/1 static returnType MethodName(paramater list) { /* Implementation */ }
static int Add(int x, int y)
{
return x + y;
}
}

Return Values and Expression Bodied Members (Updated)

You already learned about simple methods that return values, such as the Add() method. C# 6 introduced
expression-bodied members that shorten the syntax for single-line methods. For example, Add() can be
rewritten using the following syntax:

static int Add(int x, int y) => x +y;

This is what is commonly referred to as syntactic sugar, meaning that the generated IL is no different.
It’s just another way to write the method. Some find it easier to read, and others don’t, so the choice is yours
(or your team’s) which style you prefer.

This syntax also works with read-only member properties (classes and member properties are covered
in Chapter 5).

C# 7 expanded this capability to include single-line constructors, finalizers, and get and set accessors
on properties and indexers (all covered later in this book, starting with Chapter 5). Throughout this book you
will see a mixture of using expression-bodied members as well as the more traditional approach.

Note Don't be alarmed by the => operator. This is a lambda operation, which is covered in great detail in
Chapter 10. That chapter also explains exactly how expression-bodied members work. For now, just consider
them a shortcut to writing single-line statements.

Method Parameter Modifiers

The default manner in which a parameter is sent into a function is by value. Simply put, if you do not mark
an argument with a parameter modifier, a copy of the data is passed into the function. As explained later in
this chapter, exactly what is copied will depend on whether the parameter is a value type or a reference type.

While the definition of a method in C# is quite straightforward, you can use a handful of methods to
control how arguments are passed to the method in question, as listed in Table 4-2.

119

http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Table 4-2. C# Parameter Modifiers

Parameter Modifier Meaning in Life

(None) If a parameter is not marked with a parameter modifier, it is assumed to be
p p
passed by value, meaning the called method receives a copy of the original data.

out Output parameters must be assigned by the method being called and, therefore,
are passed by reference. If the called method fails to assign output parameters,
you are issued a compiler error.

ref The value is initially assigned by the caller and may be optionally modified by
the called method (as the data is also passed by reference). No compiler error is
generated if the called method fails to assign a ref parameter.

params This parameter modifier allows you to send in a variable number of arguments
as a single logical parameter. A method can have only a single params modifier,
and it must be the final parameter of the method. In reality, you might not need
to use the params modifier all too often; however, be aware that numerous
methods within the base class libraries do make use of this C# language feature.

To illustrate the use of these keywords, create a new Console Application project named
FunWithMethods. Now, let’s walk through the role of each keyword.

Discards

Discards are temporary, dummy variables that are intentionally unused. They are unassigned, don’t have
avalue, and might not even allocate any memory. This can provide a performance benefit but, at the least,
can make your code more readable. Discards can be used with out parameters, with tuples, with pattern
matching (Chapters 6 and 8), or even as stand-alone variables.

You might wonder why you would use assign a value to a throwaway variable. It comes in handy with
async programming, as you will see Chapter 19.

The Default by Value Parameter-Passing Behavior

The default manner in which a parameter is sent into a function is by value. Simply put, if you do not mark
an argument with a parameter modifier, a copy of the data is passed into the function. As explained later in
this chapter, exactly what is copied will depend on whether the parameter is a value type or a reference type.
For the time being, assume the following method within the Program class operates on two numerical data
types passed by value:

// Arguments are passed by value by default.
static int Add(int x, int y)

{
int ans = x + y;
// Caller will not see these changes
// as you are modifying a copy of the
// original data.
X = 10000;
y = 88888;
return ans;
}

120

http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_19

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Numerical data falls under the category of value types. Therefore, if you change the values of the
parameters within the scope of the member, the caller is blissfully unaware, given that you are changing the
values on a copy of the caller’s original data.

static void Main(string[] args)

{

Console.WritelLine("***** Fyn with Methods *****\n");

// Pass two variables in by value.

int x =9, y = 10;

Console.WriteLine("Before call: X: {0}, Y: {1}", x, y);
Console.WriteLine("Answer is: {0}", Add(x, y));
Console.WriteLine("After call: X: {0}, Y: {1}", x, y);
Console.ReadlLine();

As you would hope, the values of x and y remain identical before and after the call to Add(), as shown in
the following output, as the data points were sent in by value. Thus, any changes on these parameters within
the Add() method are not seen by the caller, as the Add() method is operating on a copy of the data.

Rkrkk Fun with Methods *¥*¥*

Before call: X: 9, Y: 10
Answer is: 19
After call: X: 9, Y: 10

The out Modifier (Updated)

Next, you have the use of output parameters. Methods that have been defined to take output parameters
(via the out keyword) are under obligation to assign them to an appropriate value before exiting the method
scope (if you fail to do so, you will receive compiler errors).

To illustrate, here is an alternative version of the Add () method that returns the sum of two integers
using the C# out modifier (note the physical return value of this method is now void):

// Output parameters must be assigned by the called method.
static void Add(int x, int y, out int ans)
{

ans = x +y;

}

Calling a method with output parameters also requires the use of the out modifier. However, the
local variables that are passed as output variables are not required to be assigned before passing them in
as output arguments (if you do so, the original value is lost after the call). The reason the compiler allows
you to send in seemingly unassigned data is because the method being called must make an assignment.
Starting with C# 7, out parameters do not need to be declared before using them. In other words, they can be
declared inside the method call, like this:

Add(90, 90, out int ans);

121

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

The following code is an example of calling a method with an inline declaration of the out parameter:

static void Main(string[] args)

{

Console.WritelLine("***¥** Fyn with Methods *¥***");

// No need to assign initial value to local variables

// used as output parameters, provided the first time

// you use them is as output arguments.

// C# 7 allows for out parameters to be declared in the method call
Add(90, 90, out int ans);

Console.WriteLine("90 + 90 = {0}", ans);

Console.ReadlLine();

The previous example is intended to be illustrative in nature; you really have no reason to return the
value of your summation using an output parameter. However, the C# out modifier does serve a useful
purpose: it allows the caller to obtain multiple outputs from a single method invocation.

// Returning multiple output parameters.
static void FillTheseValues(out int a, out string b, out bool c)

{
a=9;
b = "Enjoy your string.";
c = true;

}

The caller would be able to invoke the FillTheseValues() method. Remember that you must use the
out modifier when you invoke the method, as well as when you implement the method.

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Methods *¥¥**");

int i; string str; bool b;
FillTheseValues(out i, out str, out b);

Console.WriteLine("Int is: {0}", i);
Console.WriteLine("String is: {0}", str);
Console.WritelLine("Boolean is: {0}", b);
Console.ReadlLine();

Note C# 7 introduces tuples, which are another way to return multiple values out of a method call. You'll
learn more about that later in this chapter.

122

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Always remember that a method that defines output parameters must assign the parameter to a valid
value before exiting the method scope. Therefore, the following code will result in a compiler error, as the
output parameter has not been assigned within the method scope:

static void ThisWontCompile(out int a)
{
Console.WriteLine("Error! Forgot to assign output arg!");

}

Finally, if you don’t care about the value of an out parameter, you can use a discard as a placeholder.
For example, if you want to determine whether a string is a valid date format but don’t care about the parsed
date, you could write the following code:

if (DateTime.TryParse(dateString, out)
{
//do something

}

The ref Modifier

Now consider the use of the C# ref parameter modifier. Reference parameters are necessary when you want
to allow a method to operate on (and usually change the values of) various data points declared in the caller’s
scope (such as a sorting or swapping routine). Note the distinction between output and reference parameters.

e Output parameters do not need to be initialized before they are passed to the method.
The reason for this is that the method must assign output parameters before exiting.

e Reference parameters must be initialized before they are passed to the method.
The reason for this is that you are passing a reference to an existing variable. If you
don’t assign it to an initial value, that would be the equivalent of operating on an
unassigned local variable.

Let’s check out the use of the ref keyword by way of a method that swaps two string variables
(of course, any two data types could be used here, including int, bool, float, and so on).

// Reference parameters.
public static void SwapStrings(ref string si, ref string s2)

{
string tempStr = si;
s1 = s2;
s2 = tempStr;

}

This method can be called as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Methods *****");
string str1 = "Flip";

string str2 = "Flop";
Console.WritelLine("Before: {0}, {1} ", stri, str2);

123

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

SwapStrings(ref stri, ref str2);
Console.WritelLine("After: {0}, {1} ", stri, str2);
Console.ReadlLine();

}

Here, the caller has assigned an initial value to local string data (str1 and str2). After the call to
SwapStrings() returns, strl now contains the value "Flop", while str2 reports the value "Flip".

Before: Flip, Flop
After: Flop, Flip

Note The C# ref parameter modifier keyword will be revisited later in this chapter in the section
“Understanding Value Types and Reference Types.” As you will see, the behavior of this keyword changes just a
bit depending on whether the argument is a value type or reference type.

ref Locals and Returns (New)

In addition to modifying parameters with the ref keyword, C# 7 introduces the ability to use and return
references to variables defined elsewhere. Before showing how that works, let’s look at the following method:

// Returns the value at the array position.
public static string SimpleReturn(string[] strArray, int position)
{

return strArray[position];

}

A string array is passed in (by value), along with a position value. Then the value of the array at that
position is returned. If the string that is returned from the method is modified outside of this method, you
would expect the array to still hold the original values. As the following code demonstrates, that is exactly
what happens:

#iregion Ref locals and params

string[] stringArray = { "one", "two", "three" };

int pos = 1;

Console.Writeline("=> Use Simple Return");

Console.WriteLine("Before: {0}, {1}, {2} ", stringArray[0], stringArray[1], stringArray[2]);
var output = SimpleReturn(stringArray, pos);

output = "new";

Console.WriteLine("After: {0}, {1}, {2} ", stringArray[o0], stringArray[1], stringArray[2]);
#endregion

124

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

The result of this code outputs the following to the console:

=> Use Simple Return
Before: one, two, three
After: one, two, three

But what if you didn’t want the value of the array position but instead a reference to the array position?
This could certainly be achieved prior to C# 7, but the new capabilities using the ref keyword makes it much
simpler.

There are two changes that need to be made to the simple method. The first is that instead of a straight
return [value to be returned], the method mustdo a return ref [reference to be returned].The
second change is that the method declaration must also include the ref keyword. Create a new method
called SampleRefReturn like this:

// Returning a reference.
public static ref string SampleRefReturn(string[] strArray, int position)
{

return ref strArray[position];

}

This is essentially the same method as before, with the addition of the two instances of the ref keyword.
This now returns a reference to the position in the array, instead of the value held in the position of the array.
Calling this method also requires the use of the ref keyword, both for the return variable and for the method
call itself, like this:

ref var refOutput = xef SampleRefReturn(stringArray, pos);

Any changes to the reference returned will then also update the array, as the following code
demonstrates:

#region Ref locals and params

Console.WritelLine("=> Use Ref Return");

Console.WritelLine("Before: {0}, {1}, {2} ", stringArray[0], stringArray[1], stringArray[2]);
ref var refOutput = ref SampleRefReturn(stringArray, pos);

refOutput = "new";

Console.WriteLine("After: {0}, {1}, {2} ", stringArray[o0], stringArray[1], stringArray[2]);

Printing the array values to the console shows the effect of changing the value of the reference variable
returned from the new method:

=> Use Ref Return
Before: one, two, three
After: one, new, three

125

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

There are some rules around this new feature that are worth noting here:

e Standard method results cannot be assigned to a ref local variable. The method
must have been created as a ref return method.

e Alocal variable inside the ref method can’t be returned as a ref local variable.
The following code does not work:

ThisWillNotWork(string[] array)
{

int foo = 5;

return ref foo;

}

e This new feature doesn’t work with async methods (covered in Chapter 19).

The params Modifier

C# supports the use of parameter arrays using the params keyword. To understand this language feature, you
must (as the name implies) understand how to manipulate C# arrays. If this is not the case, you might want
to return to this section after you read the section “Understanding C# Arrays” later in this chapter.

The params keyword allows you to pass into a method a variable number of identically typed
parameters (or classes related by inheritance) as a single logical parameter. As well, arguments marked with
the params keyword can be processed if the caller sends in a strongly typed array or a comma- delimited list
of items. Yes, this can be confusing! To clear things up, assume you want to create a function that allows the
caller to pass in any number of arguments and return the calculated average.

If you were to prototype this method to take an array of doubles, this would force the caller to
first define the array, then fill the array, and finally pass it into the method. However, if you define
CalculateAverage()to take a params of double[] data types, the caller can simply pass a comma- delimited
list of doubles. The .NET runtime will automatically package the set of doubles into an array of type double
behind the scenes.

// Return average of "some number" of doubles.
static double CalculateAverage(params double[] values)

{

Console.WriteLine("You sent me {0} doubles.", values.Length);

double sum = 0;

if(values.Length == 0)
return sum;

for (int i = 0; i < values.Length; i++)
sum += values[i];

return (sum / values.length);

This method has been defined to take a parameter array of doubles. What this method is in fact saying
is, “Send me any number of doubles (including zero), and I'll compute the average.” Given this, you can call
CalculateAverage() in any of the following ways:

126

http://dx.doi.org/10.1007/978-1-4842-3018-3_19

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

static void Main(string[] args)

{
Console.Writeline("***** Fyn with Methods *¥***");
// Pass in a comma-delimited list of doubles...
double average;
average = CalculateAverage(4.0, 3.2, 5.7, 64.22, 87.2);
Console.WriteLine("Average of data is: {0}", average);
/! ...or pass an array of doubles.
double[] data = { 4.0, 3.2, 5.7 };
average = CalculateAverage(data);
Console.WriteLine("Average of data is: {0}", average);
// Average of 0 is 0!
Console.WriteLine("Average of data is: {0}", CalculateAverage());
Console.ReadlLine();

}

If you did not make use of the params modifier in the definition of CalculateAverage(), the first
invocation of this method would result in a compiler error, as the compiler would be looking for a version of
CalculateAverage() that took five double arguments.

Note To avoid any ambiguity, C# demands a method support only a single params argument, which must
be the final argument in the parameter list.

As you might guess, this technique is nothing more than a convenience for the caller, given that the
array is created by the CLR as necessary. By the time the array is within the scope of the method being called,
you are able to treat it as a full-blown .NET array that contains all the functionality of the System.Array base
class library type. Consider the following output:

You sent me 5 doubles.
Average of data is: 32.864
You sent me 3 doubles.
Average of data is: 4.3
You sent me 0 doubles.
Average of data is: 0

Defining Optional Parameters

C# allows you to create methods that can take optional arguments. This technique allows the caller to invoke
a single method while omitting arguments deemed unnecessary, provided the caller is happy with the
specified defaults.

127

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Note As you will see in Chapter 16, a key motivation for adding optional arguments to C# is to simplify
interacting with COM objects. Several Microsoft object models (e.g., Microsoft Office) expose their functionality
via COM objects, many of which were written long ago to make use of optional parameters, which earlier
versions of G# did not support.

To illustrate working with optional arguments, assume you have a method named EnterlLogData(),
which defines a single optional parameter.

static void EnterlLogData(string message, string owner = "Programmer")
{

Console.Beep();

Console.WriteLine("Error: {0}", message);

Console.WritelLine("Owner of Error: {0}", owner);

}

Here, the final string argument has been assigned the default value of "Programmer"”, via an
assignment within the parameter definition. Given this, you can call EnterLogData() from within Main() in
two ways.

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Methods *¥¥**");

EnterLogData("Oh no! Grid can't find data");
EnterLogData("Oh no! I can't find the payroll data", "CFO");

Console.ReadlLine();

Because the first invocation of EnterLogData() did not specify a second string argument, you would
find that the programmer is the one responsible for losing data for the grid, while the CFO misplaced the
payroll data (as specified by the second argument in the second method call).

One important thing to be aware of is that the value assigned to an optional parameter must be
known at compile time and cannot be resolved at runtime (if you attempt to do so, you'll receive compile-
time errors!). To illustrate, assume you want to update EnterLogData() with the following extra optional
parameter:

// Error! The default value for an optional arg must be known
// at compile time!
static void EnterlLogData(string message,
string owner = "Programmer", DateTime timeStamp = DateTime.Now)
{

Console.Beep();

Console.WriteLine("Error: {0}", message);
Console.WritelLine("Owner of Error: {0}", owner);
Console.WriteLine("Time of Error: {o}", timeStamp);

128

http://dx.doi.org/10.1007/978-1-4842-3018-3_16

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

This will not compile because the value of the Now property of the DateTime class is resolved at runtime,
not compile time.

Note To avoid ambiguity, optional parameters must always be packed onto the end of a method signature.
It is a compiler error to have optional parameters listed before nonoptional parameters.

Invoking Methods Using Named Parameters

Another language feature found in C# is support for named arguments. To be honest, at first glance,
this language construct might appear to do little more than result in confusing code. And to continue
being completely honest, this could be the case! Similar to optional arguments, including support for
named parameters is partially motivated by the desire to simplify the process of working with the COM
interoperability layer (again, see Chapter 16).

Named arguments allow you to invoke a method by specifying parameter values in any order you
choose. Thus, rather than passing parameters solely by position (as you will do in most cases), you can
choose to specify each argument by name using a colon operator. To illustrate the use of named arguments,
assume you have added the following method to the Program class:

static void DisplayFancyMessage(ConsoleColor textColor,
ConsoleColor backgroundColor, string message)
{

// Store old colors to restore after message is printed.
ConsoleColor oldTextColor = Console.ForegroundColor;
ConsoleColor oldbackgroundColor = Console.BackgroundColor;

// Set new colors and print message.
Console.ForegroundColor = textColor;
Console.BackgroundColor = backgroundColor;
Console.WriteLine(message);

// Restore previous colors.
Console.ForegroundColor = oldTextColor;
Console.BackgroundColor = oldbackgroundColor;

Now, the way DisplayFancyMessage () was written, you would expect the caller to invoke this method
by passing two ConsoleColor variables followed by a string type. However, using named arguments, the
following calls are completely fine:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Methods *****");
DisplayFancyMessage(message: "Wow! Very Fancy indeed!",

textColor: ConsoleColor.DarkRed,
backgroundColor: ConsoleColor.White);

129

http://dx.doi.org/10.1007/978-1-4842-3018-3_16

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

DisplayFancyMessage(backgroundColor: ConsoleColor.Green,
message: "Testing...",
textColor: ConsoleColor.DarkBlue);

Console.ReadlLine();

}

One minor “gotcha” regarding named arguments is that if you begin to invoke a method using
positional parameters, you must list them before any named parameters. In other words, named arguments
must always be packed onto the end of a method call. The following code is an example:

// This is OK, as positional args are listed before named args.
DisplayFancyMessage(ConsoleColor.Blue,

message: "Testing...",

backgroundColor: ConsoleColor.White);

// This is an ERROR, as positional args are listed after named args.
DisplayFancyMessage(message: "Testing...",

backgroundColor: ConsoleColor.White,

ConsoleColor.Blue);

This restriction aside, you might still be wondering when you would ever want to use this language
feature. After all, if you need to specify three arguments to a method, why bother flipping around their
positions?

Well, as it turns out, if you have a method that defines optional arguments, this feature can actually be
really helpful. Assume DisplayFancyMessage() has been rewritten to now support optional arguments, as
you have assigned fitting defaults.

static void DisplayFancyMessage(ConsoleColor textColor = ConsoleColor.Blue,

ConsoleColor backgroundColor = ConsoleColor.White,
string message = "Test Message")

{
}

Given that each argument has a default value, named arguments allow the caller to specify only the
parameters for which they do not want to receive the defaults. Therefore, if the caller wants the value
"Hello!" to appear in blue text surrounded by a white background, they can simply specify the following:
DisplayFancyMessage(message: "Hello!");

Or, if the caller wants to see “Test Message” print out with a green background containing blue text, they
can invoke DisplayFancyMessage().

DisplayFancyMessage(backgroundColor: ConsoleColor.Green);

Asyou can see, optional arguments and named parameters tend to work hand in hand. To wrap up your
examination of building C# methods, I need to address the topic of method overloading.

Source Code You can find the FunWithMethods application in the Chapter 4 subdirectory.

130

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Understanding Method Overloading

Like other modern object-oriented languages, C# allows a method to be overloaded. Simply put, when you
define a set of identically named methods that differ by the number (or type) of parameters, the method in
question is said to be overloaded.

To understand why overloading is so useful, consider life as an old-school Visual Basic 6.0 (VB6)
developer. Assume you are using VB6 to build a set of methods that return the sum of various incoming
data types (Integers, Doubles, and so on). Given that VB6 does not support method overloading, you would
be required to define a unique set of methods that essentially do the same thing (return the sum of the
arguments).

' VUB6 code examples.

Public Function AddInts(ByVal x As Integer, ByVal y As Integer) As Integer
AddInts = x +y

End Function

Public Function AddDoubles(ByVal x As Double, ByVal y As Double) As Double
AddDoubles = x +y
End Function

Public Function AddLongs(ByVal x As Long, ByVal y As Long) As Long
AddLongs = x +y
End Function

Not only can code such as this become tough to maintain, but the caller must now be painfully aware of
the name of each method. Using overloading, you are able to allow the caller to call a single method named
Add(). Again, the key is to ensure that each version of the method has a distinct set of arguments (methods
differing only by return type are not unique enough).

Note As explained in Chapter 9, it is possible to build generic methods that take the concept of overloading
to the next level. Using generics, you can define type placeholders for a method implementation that are
specified at the time you invoke the member in question.

To check this out firsthand, create a new Console Application project named MethodOverloading. Now,
consider the following class definition:

// C# code.
class Program

{

static void Main(string[] args)
{
}

// Overloaded Add() method.
static int Add(int x, int y)
{ return x +vy; }

static double Add(double x, double y)
{ return x + y; }

131

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

static long Add(long x, long y)
{ return x + y; }

}

The caller can now simply invoke Add() with the required arguments, and the compiler is happy to
comply, given that the compiler is able to resolve the correct implementation to invoke with the provided
arguments.

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Method Overloading *****\n");

// Calls int version of Add()
Console.WritelLine(Add(10, 10));

// Calls long version of Add() (using the new digit separator)
Console.WriteLine(Add(900 000 000 000, 900 000 000 000));

// Calls double version of Add()
Console.Writeline(Add(4.3, 4.4));

Console.ReadLine();

The Visual Studio IDE provides assistance when calling overloaded methods to boot. When you type
in the name of an overloaded method (such as your good friend Console.WritelLine()), IntelliSense will
list each version of the method in question. Note that you are able to cycle through each version of an
overloaded method using the up and down arrow keys shown in Figure 4-1.

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Method Overloading *****\n");

// Calls int version of Add()
Console.WriteLine(Add(1e, 10));

// Calls long version of Add() (using the new digit separator)
Console.WritelLine(Add(900_008_000 000, 900 _000_000 000));

// Calls double version of Add()
Console.WritelLine(Add(4.3, 4.4));

Add() T
A 10of 3 ¥ double Program.Add(double x, double y)

}

Figure 4-1. Visual Studio IntelliSense for overloaded methods

132

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Source Code You can find the MethodOverloading application in the Chapter 4 subdirectory.

Local Functions (New)

Another new feature introduced in C# 7 is the ability to create methods within methods, referred to officially
as local functions. A local function is a function declared inside another function.

Note Up to this point in the text, we’ve used the term method. Why all of a sudden am | introducing the
term function? Is that something different than a method? Academically speaking, one can argue that they are
different. Practically speaking, they are used interchangeably. For this text, consider a method and a function
as equivalent. The new feature is officially named local functions, and | didn’t want to change the name just for
consistency in this text. From here on out, | am back to calling them methods.

To see how this works, create a new Console Application project named FunWithLocalFunctions. As an
example, let’s say you want to extend the Add() example from the previous section by including validation of
the inputs. There are many ways to accomplish this, and one simple way is to add the validation directly into
the Add() method. Let’s go with that and update the previous example to the following:

static int Add(int x, int y)
{
//Do some validation here
return x +y;

}

Asyou can see, there are no big changes. There’s just a comment indicating that real code should do
something. What if you wanted to separate the actual reason for the method (returning the sum of the
arguments) from the validation of the arguments? You could create additional methods and call them from
the Add() method. But that would require creating another method just for use by one other method. Maybe
that’s overkill. This new feature allows you to do the validation first and then encapsulate the real goal of the
method defined inside the AddWrapper () method, as shown here:

static int AddWrapper(int x, int y)
{

//Do some validation here

return Add();

int Add()
{
return x + y;
}
}

The contained Add() method can be called only from the wrapping AddWrapper () method. So, the
question I'm sure you are thinking is, “What did this buy me?” The answer for this example, quite simply, is
little (if anything). This feature was added into the C# specification for custom iterator methods (Chapter 8)
and asynchronous methods (Chapter 19), and you will see the benefit when you get to those topics.

133

http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_19

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Source Code You can find the LocalFunctions application in the Chapter 4 subdirectory.

That wraps up the initial examination of building methods using the syntax of C#. Next, let’s check out
how to build and manipulate enumerations and structures.

Understanding the enum Type

Recall from Chapter 1 that the .NET type system is composed of classes, structures, enumerations, interfaces,
and delegates. To begin exploration of these types, let’s check out the role of the enumeration (or simply,
enum) using a new Console Application project named FunWithEnums.

Note Do not confuse the term enum with enumerator; they are completely different concepts. An enum is
a custom data type of name-value pairs. An enumerator is a class or structure that implements a .NET interface
named IEnumerable. Typically, this interface is implemented on collection classes, as well as the System.Array
class. As you will see in Chapter 8, objects that support IEnumerable can work within the foreach loop.

When building a system, it is often convenient to create a set of symbolic names that map to known
numerical values. For example, if you are creating a payroll system, you might want to refer to the type of
employees using constants such as vice president, manager, contractor, and grunt. C# supports the notion
of custom enumerations for this very reason. For example, here is an enumeration named EmpType (you can
define this in the same file as your Program class, right before the class definition):

// A custom enumeration.
enum EmpType

Manager, //
Grunt, //
Contractor, //
VicePresident // =

n
w N = O

The EmpType enumeration defines four named constants, corresponding to discrete numerical values.
By default, the first element is set to the value zero (0), followed by an n+1 progression. You are free to
change the initial value as you see fit. For example, if it made sense to number the members of EmpType as
102 through 105, you could do so as follows:

// Begin with 102.
enum EmpType

Manager = 102,

Grunt, // = 103
Contractor, // = 104
VicePresident // = 105

134

http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_1
http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Enumerations do not necessarily need to follow a sequential ordering and do not need to have unique
values. If (for some reason or another) it makes sense to establish your EmpType as shown here, the compiler
continues to be happy:

// Elements of an enumeration need not be sequentiall!
enum EmpType

Manager = 10,
Grunt = 1,
Contractor = 100,
VicePresident = 9

}

Controlling the Underlying Storage for an enum

By default, the storage type used to hold the values of an enumeration is a System.Int32 (the C# int);
however, you are free to change this to your liking. C# enumerations can be defined in a similar manner
for any of the core system types (byte, short, int, or long). For example, if you want to set the underlying
storage value of EmpType to be a byte rather than an int, you can write the following:

// This time, EmpType maps to an underlying byte.
enum EmpType : byte

Manager = 10,
CGrunt =1,
Contractor = 100,
VicePresident = 9

}

Changing the underlying type of an enumeration can be helpful if you are building a .NET application
that will be deployed to a low-memory device and need to conserve memory wherever possible. Of course,
if you do establish your enumeration to use a byte as storage, each value must be within its range! For
example, the following version of EmpType will result in a compiler error, as the value 999 cannot fit within
the range of a byte:

// Compile-time error! 999 is too big for a byte!
enum EmpType : byte

Manager = 10,

Grunt = 1,
Contractor = 100,
VicePresident = 999

135

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Declaring enum Variables

Once you have established the range and storage type of your enumeration, you can use it in place of

so- called magic numbers. Because enumerations are nothing more than a user-defined data type, you are
able to use them as function return values, method parameters, local variables, and so forth. Assume you
have a method named AskForBonus (), taking an EmpType variable as the sole parameter. Based on the value
of the incoming parameter, you will print out a fitting response to the pay bonus request.

class Program
{
static void Main(string[] args)
{
Console.WritelLine("**** Fun with Enums *¥¥**");
// Make an EmpType variable.
EmpType emp = EmpType.Contractor;
AskForBonus (emp);
Console.ReadLine();

}

// Enums as parameters.
static void AskForBonus(EmpType e)
{
switch (e)
{
case EmpType.Manager:
Console.WriteLine("How about stock options instead?");
break;
case EmpType.Grunt:
Console.WritelLine("You have got to be kidding...");
break;
case EmpType.Contractor:
Console.WriteLine("You already get enough cash...");
break;
case EmpType.VicePresident:
Console.WritelLine("VERY GOOD, Sir!");
break;

Notice that when you are assigning a value to an enum variable, you must scope the enum name
(EmpType) to the value (Grunt). Because enumerations are a fixed set of name-value pairs, it is illegal to set an
enum variable to a value that is not defined directly by the enumerated type.

static void ThisMethodWillNotCompile()

{
// Error! SalesManager is not in the EmpType enum!
EmpType emp = EmpType.SalesManager;
// Error! Forgot to scope Grunt value to EmpType enum!
emp = Grunt;

}

136

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

The System.Enum Type

The interesting thing about .NET enumerations is that they gain functionality from the System. Enum

class type. This class defines a number of methods that allow you to interrogate and transform a given
enumeration. One helpful method is the static Enum.GetUnderlyingType(), which, as the name implies,
returns the data type used to store the values of the enumerated type (System.Byte in the case of the current
EmpType declaration).

static void Main(string[] args)
{
Console.WriteLine("**** Fun with Enums *¥¥¥*");
// Make a contractor type.
EmpType emp = EmpType.Contractor;
AskForBonus (emp);

// Print storage for the enum.
Console.WriteLine("EmpType uses a {0} for storage",

Enum.GetUnderlyingType(emp.GetType()));
Console.ReadlLine();

If you were to consult the Visual Studio Object Browser, you would be able to verify that the Enum.
GetUnderlyingType() method requires you to pass in a System. Type as the first parameter. As fully
examined in Chapter 15, Type represents the metadata description of a given .NET entity.

One possible way to obtain metadata (as shown previously) is to use the GetType () method, which is
common to all types in the .NET base class libraries. Another approach is to use the C# typeof operator.
One benefit of doing so is that you do not need to have a variable of the entity you want to obtain a metadata
description of.

// This time use typeof to extract a Type.
Console.WriteLine("EmpType uses a {0} for storage",
Enum.GetUnderlyingType(typeof(EmpType)));

Dynamically Discovering an enum’s Name-Value Pairs

Beyond the Enum.GetUnderlyingType() method, all C# enumerations support a method named
ToString(), which returns the string name of the current enumeration’s value. The following code is an
example:

static void Main(string[] args)

{
Console.WriteLine("**** Fun with Enums *¥k¥*");
EmpType emp = EmpType.Contractor;
AskForBonus (emp);

// Prints out "emp is a Contractor".

Console.WritelLine("emp is a {0}.", emp.ToString());
Console.ReadlLine();

137

http://dx.doi.org/10.1007/978-1-4842-3018-3_15

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

If you are interested in discovering the value of a given enumeration variable, rather than its name, you
can simply cast the enum variable against the underlying storage type. The following is an example:

static void Main(string[] args)

{

Console.Writeline("**** Fun with Enums *¥¥**");
EmpType emp = EmpType.Contractor;

// Prints out "Contractor = 100".
Console.WriteLine("{0} = {1}", emp.ToString(), (byte)emp);
Console.ReadlLine();

}

Note The static Enum.Format () method provides a finer level of formatting options by specifying a desired
format flag. Consult the .NET Framework 4.7 SDK documentation for full details of the System. Enum. Format()
method.

System.Enum also defines another static method named GetValues (). This method returns an instance
of System.Array. Each item in the array corresponds to a member of the specified enumeration. Consider
the following method, which will print out each name-value pair within any enumeration you pass in as a
parameter:

// This method will print out the details of any enum.
static void EvaluateEnum(System.Enum e)

{

Console.WriteLine("=> Information about {0}", e.GetType().Name);

Console.WriteLine("Underlying storage type: {0}",
Enum.GetUnderlyingType(e.GetType()));

// Get all name-value pairs for incoming parameter.
Array enumData = Enum.GetValues(e.GetType());
Console.WriteLine("This enum has {0} members.", enumData.Length);

// Now show the string name and associated value, using the D format
// flag (see Chapter 3).
for(int i = 0; i < enumData.Length; i++)

{

Console.WriteLine("Name: {0}, Value: {0:D}",
enumData.GetValue(i));
}

Console.Writeline();

138

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

To test this new method, update your Main() method to create variables of several enumeration types
declared in the System namespace (as well as an EmpType enumeration for good measure). The following
code is an example:

static void Main(string[] args)

{

Console.WriteLine("**** Fun with Enums *¥¥¥*");
EmpType e2 = EmpType.Contractor;

// These types are enums in the System namespace.
DayOfWeek day = DayOfWeek.Monday;
ConsoleColor cc = ConsoleColor.Gray;

EvaluateEnum(e2);
EvaluateEnum(day);
EvaluateEnum(cc);
Console.ReadLine();

Some partial output is shown here:

=> Information about DayOfWeek
Underlying storage type: System.Int32
This enum has 7 members.

Name: Sunday, Value: 0

Name: Monday, Value: 1

Name: Tuesday, Value: 2

Name: Wednesday, Value: 3

Name: Thursday, Value: 4

Name: Friday, Value: 5

Name: Saturday, Value: 6

Asyou will see over the course of this text, enumerations are used extensively throughout the .NET
base class libraries. For example, ADO.NET makes use of numerous enumerations to represent the state
of a database connection (e.g., opened or closed) or the state of a row in a DataTable (e.g., changed, new,
or detached). Therefore, when you make use of any enumeration, always remember that you are able to
interact with the name-value pairs using the members of System.Enum.

Source Code You can find the FunWithEnums project in the Chapter 4 subdirectory.

Understanding the Structure (aka Value Type)

Now that you understand the role of enumeration types, let’s examine the use of .NET structures (or simply
structs). Structure types are well suited for modeling mathematical, geometrical, and other “atomic” entities
in your application. A structure (such as an enumeration) is a user-defined type; however, structures are not
simply a collection of name-value pairs. Rather, structures are types that can contain any number of data
fields and members that operate on these fields.

139

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Note If you have a background in OOP, you can think of a structure as a “lightweight class type,” given that
structures provide a way to define a type that supports encapsulation but cannot be used to build a family of
related types. When you need to build a family of related types through inheritance, you will need to make use
of class types.

On the surface, the process of defining and using structures is simple, but as they say, the devil
is in the details. To begin understanding the basics of structure types, create a new project named
FunWithStructures. In C#, structures are defined using the struct keyword. Define a new structure named
Point, which defines two member variables of type int and a set of methods to interact with said data.

struct Point

{
// Fields of the structure.
public int X;
public int Y;

// Add 1 to the (X, Y) position.
public void Increment()

{

X++; Y++;

}

// Subtract 1 from the (X, Y) position.
public void Decrement()
{
X--; Y--;
}

// Display the current position.
public void Display()
{
Console.WritelLine("X = {0}, Y = {1}", X, Y);
}
}

Here, you have defined your two integer fields (X and Y) using the public keyword, which is an access
control modifier (Chapter 5 furthers this discussion). Declaring data with the public keyword ensures the
caller has direct access to the data from a given Point variable (via the dot operator).

Note Itis typically considered bad style to define public data within a class or structure. Rather, you will
want to define private data, which can be accessed and changed using public properties. These details will be
examined in Chapter 5.

140

http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Here is a Main() method that takes the Point type out for a test-drive:

static void Main(string[] args)

{

Console.WritelLine("***** A First Look at Structures *¥¥**\n");

// Create an initial Point.
Point myPoint;

myPoint.X = 349;

myPoint.Y = 76;
myPoint.Display();

// Adjust the X and Y values.
myPoint.Increment();

myPoint.Display();
Console.ReadLine();

The output is as you would expect.

Bkrkk A First Look at Structures *¥***

>
|

76
77

= 349) Y
= 350, Y

>
I

Creating Structure Variables

When you want to create a structure variable, you have a variety of options. Here, you simply create a Point
variable and assign each piece of public field data before invoking its members. If you do not assign each
piece of public field data (X and Y in this case) before using the structure, you will receive a compiler error.

// Error! Did not assign Y value.
Point p1;

p1.X = 10;

p1.Display();

// OK! Both fields assigned before use.
Point p2;

p2.X = 10;

p2.Y = 10;

p2.Display();

As an alternative, you can create structure variables using the C# new keyword, which will invoke the
structure’s default constructor. By definition, a default constructor does not take any arguments. The benefit
of invoking the default constructor of a structure is that each piece of field data is automatically set to its
default value.

141

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

// Set all fields to default values
// using the default constructor.
Point p1 = new Point();

// Prints X=0,Y=0.
p1.Display();

It is also possible to design a structure with a custom constructor. This allows you to specify the values
of field data upon variable creation, rather than having to set each data member field by field. Chapter 5 will
provide a detailed examination of constructors; however, to illustrate, update the Point structure with the
following code:

struct Point

{
// Fields of the structure.
public int X;
public int Y;

// A custom constructor.
public Point(int XPos, int YPos)
{
X
Y

}

XPos;
YPos;

With this, you could now create Point variables, as follows:

// Call custom constructor.
Point p2 = new Point(50, 60);

// Prints X=50,Y=60.
p2.Display();

As mentioned, working with structures on the surface is quite simple. However, to deepen your
understanding of this type, you need to explore the distinction between a .NET value type and a .NET
reference type.

Source Code You can find the FunWithStructures project in the Chapter 4 subdirectory.

Understanding Value Types and Reference Types

Note The following discussion of value types and reference types assumes that you have a background in
object-oriented programming. If this is not the case, you might want to skip to the “Understanding C# Nullable
Types” section of this chapter and return to this section after you have read Chapters 5 and 6.

142

http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Unlike arrays, strings, or enumerations, C# structures do not have an identically named representation
in the .NET library (that is, there is no System.Structure class) but are implicitly derived from System.
ValueType. Simply put, the role of System.ValueType is to ensure that the derived type (e.g., any structure) is
allocated on the stack, rather than the garbage-collected heap. Simply put, data allocated on the stack can be
created and destroyed quickly, as its lifetime is determined by the defining scope. Heap-allocated data, on
the other hand, is monitored by the .NET garbage collector and has a lifetime that is determined by a large
number of factors, which will be examined in Chapter 13.

Functionally, the only purpose of System.ValueType is to override the virtual methods defined by
System.Object to use value-based versus reference-based semantics. As you might know, overriding is the
process of changing the implementation of a virtual (or possibly abstract) method defined within a base
class. The base class of ValueType is System.0Object. In fact, the instance methods defined by System.
ValueType are identical to those of System.0Object.

// Structures and enumerations implicitly extend System.ValueType.
public abstract class ValueType : object
{

public virtual bool Equals(object obj);

public virtual int GetHashCode();

public Type GetType();

public virtual string ToString();

Given that value types are using value-based semantics, the lifetime of a structure (which includes all
numerical data types [int, float], as well as any enum or structure) is predictable. When a structure variable
falls out of the defining scope, it is removed from memory immediately.

// Local structures are popped off

// the stack when a method returns.

static void LocalValueTypes()

{
// Recall! "int" is really a System.Int32 structure.
int 1 = 0;

// Recalll Point is a structure type.
Point p = new Point();
} // "i" and "p" popped off the stack here!

Value Types, References Types, and the Assignment Operator

When you assign one value type to another, a member-by-member copy of the field data is achieved. In the
case of a simple data type such as System.Int32, the only member to copy is the numerical value. However,
in the case of your Point, the X and Y values are copied into the new structure variable. To illustrate, create
anew Console Application project named ValueAndReferenceTypes and then copy your previous Point
definition into your new namespace. Next, add the following method to your Program type:

// Assigning two intrinsic value types results in

// two independent variables on the stack.
static void ValueTypeAssignment()

143

http://dx.doi.org/10.1007/978-1-4842-3018-3_13

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Console.WritelLine("Assigning value types\n");

Point p1
Point p2

new Point(10, 10);
p1;

// Print both points.
p1.Display();
p2.Display();

// Change p1.X and print again. p2.X is not changed.
p1.X = 100;

Console.WriteLine("\n=> Changed p1.X\n");
p1.Display();

p2.Display();

Here, you have created a variable of type Point (named p1) that is then assigned to another Point (p2).
Because Point is a value type, you have two copies of the MyPoint type on the stack, each of which can be
independently manipulated. Therefore, when you change the value of p1.X, the value of p2.X is unaffected.

Assigning value types
X =10, Y = 10
X =10, Y = 10
=> Changed p1.X
X = 100, Y = 10
X =10, Y = 10

In stark contrast to value types, when you apply the assignment operator to reference types (meaning
all class instances), you are redirecting what the reference variable points to in memory. To illustrate, create
anew class type named PointRef that has the same members as the Point structures, beyond renaming the
constructor to match the class name.

// Classes are always reference types.

class PointRef

{
// Same members as the Point structure...
// Be sure to change your constructor name to PointRef!
public PointRef(int XPos, int YPos)

{

X
Y

}

XPos;
YPos;

}

144

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Now, use your PointRef type within the following new method. Note that beyond using the PointRef
class, rather than the Point structure, the code is identical to the ValueTypeAssignment () method.

static void ReferenceTypeAssignment()

{
Console.WritelLine("Assigning reference types\n");
PointRef p1 = new PointRef(10, 10);
PointRef p2 = p1;

// Print both point refs.
p1.Display();
p2.Display();

// Change p1.X and print again.

p1.X = 100;

Console.WriteLine("\n=> Changed p1.X\n");
p1.Display();

p2.Display();

In this case, you have two references pointing to the same object on the managed heap. Therefore, when
you change the value of X using the p1 reference, p2.X reports the same value. Assuming you have called this
new method within Main(), your output should look like the following:

Assigning reference types
X =10, Y = 10

=> Changed p1.X
X =100, Y = 10
X = 100, Y = 10

Value Types Containing Reference Types

Now that you have a better feeling for the basic differences between value types and reference types, let’s
examine a more complex example. Assume you have the following reference (class) type that maintains an
informational string that can be set using a custom constructor:

class Shapelnfo

{
public string InfoString;
public ShapeInfo(string info)

InfoString = info;

}
}

145

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Now assume that you want to contain a variable of this class type within a value type named Rectangle.
To allow the caller to set the value of the inner ShapeInfo member variable, you also provide a custom
constructor. Here is the complete definition of the Rectangle type:

struct Rectangle

{
// The Rectangle structure contains a reference type member.
public ShapeInfo RectInfo;

public int RectTop, RectlLeft, RectBottom, RectRight;

public Rectangle(string info, int top, int left, int bottom, int right)
{

RectInfo = new ShapeInfo(info);

RectTop = top; RectBottom = bottom;

RectlLeft = left; RectRight = right;

}

public void Display()
{
Console.WriteLine("String = {0}, Top = {1}, Bottom = {2}, " +
"Left = {3}, Right = {4}",
RectInfo.infoString, RectTop, RectBottom, RectlLeft, RectRight);

At this point, you have contained a reference type within a value type. The million-dollar question now
becomes, what happens if you assign one Rectangle variable to another? Given what you already know
about value types, you would be correct in assuming that the integer data (which is indeed a structure—
System.Int32) should be an independent entity for each Rectangle variable. But what about the internal
reference type? Will the object’s state be fully copied, or will the reference to that object be copied? To
answer this question, define the following method and invoke it from Main():

static void ValueTypeContainingRefType()
{
// Create the first Rectangle.
Console.WriteLine("-> Creating r1");
Rectangle r1 = new Rectangle("First Rect", 10, 10, 50, 50);

// Now assign a new Rectangle to ri.
Console.WriteLine("-> Assigning r2 to r1");
Rectangle r2 = r1;

// Change some values of r2.
Console.WriteLine("-> Changing values of r2");
r2.RectInfo.InfoString = "This is new info!";
r2.RectBottom = 4444;

// Print values of both rectangles.

r1.Display();
r2.Display();

146

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

The output is shown here:

-> Creating r1

-> Assigning r2 to r1

-> Changing values of r2

String = This is new info!, Top
String = This is new info!, Top = 10, Bottom

10, Bottom = 50, Left = 10, Right = 50
4444, Left = 10, Right = 50

Asyou can see, when you change the value of the informational string using the 12 reference, the r1
reference displays the same value. By default, when a value type contains other reference types, assignment
results in a copy of the references. In this way, you have two independent structures, each of which contains
a reference pointing to the same object in memory (i.e., a shallow copy). When you want to perform a deep
copy, where the state of internal references is fully copied into a new object, one approach is to implement
the ICloneable interface (as you will do in Chapter 8).

Source Code You can find the ValueAndReferenceTypes project in the Chapter 4 subdirectory.

Passing Reference Types by Value

Reference types or value types can, obviously, be passed as parameters to methods. However, passing
areference type (e.g., a class) by reference is quite different from passing it by value. To understand the
distinction, assume you have a simple Person class defined in a new Console Application project named
RefTypeValTypeParams, defined as follows:

class Person

{

public string personName;
public int personAge;

// Constructors.
public Person(string name, int age)

{

personName = name;
personAge = age;

public Person(){}

public void Display()
{

Console.WriteLine("Name: {0}, Age: {1}", personName, personAge);

}
}

147

http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Now, what if you create a method that allows the caller to send in the Person object by value (note the
lack of parameter modifiers, such as out or ref)?

static void SendAPersonByValue(Person p)

{
// Change the age of

p.personAge = 99;

p"?

// Will the caller see this reassignment?
p = new Person("Nikki", 99);

}

Notice how the SendAPersonByValue() method attempts to reassign the incoming Person reference to a
new Person object, as well as change some state data. Now let’s test this method using the following Main()
method:

static void Main(string[] args)

{
// Passing ref-types by value.
Console.WriteLine("***** pPassing Person object by value ***¥*");
Person fred = new Person("Fred", 12);
Console.WriteLine("\nBefore by value call, Person is:");
fred.Display();

SendAPersonByValue(fred);

Console.WriteLine("\nAfter by value call, Person is:");
fred.Display();

Console.ReadlLine();

The following is the output of this call:

*¥¥x¥¥ Passing Person object by value ***¥**

Before by value call, Person is:
Name: Fred, Age: 12

After by value call, Person is:
Name: Fred, Age: 99

Asyou can see, the value of personAge has been modified. This behavior seems to fly in the face of
what it means to pass a parameter by value. Given that you were able to change the state of the incoming
Person, what was copied? The answer: a copy of the reference to the caller’s object. Therefore, as the
SendAPersonByValue() method is pointing to the same object as the caller, it is possible to alter the object’s
state data. What is not possible is to reassign what the reference is pointing to.

148

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Passing Reference Types by Reference

Now assume you have a SendAPersonByReference() method, which passes a reference type by reference
(note the ref parameter modifier).

static void SendAPersonByReference(ref Person p)
{

// Change some data of "p".

p.personAge = 555;

// "p" is now pointing to a new object on the heap!
p = new Person("Nikki", 999);
}

As you might expect, this allows complete flexibility of how the callee is able to manipulate the
incoming parameter. Not only can the callee change the state of the object, but if it so chooses, it may also
reassign the reference to a new Person object. Now ponder the following updated Main() method:

static void Main(string[] args)
{
// Passing ref-types by ref.
Console.WriteLine("***** Passing Person object by reference *****");

Person mel = new Person("Mel", 23);
Console.WriteLine("Before by ref call, Person is:");
mel.Display();

SendAPersonByReference(ref mel);
Console.WriteLine("After by ref call, Person is:");
mel.Display();

Console.ReadLine();

Notice the following output:

*¥xxx Passing Person object by reference *****
Before by ref call, Person is:

Name: Mel, Age: 23

After by ref call, Person is:

Name: Nikki, Age: 999

Asyou can see, an object named Mel returns after the call as an object named Nikki, as the method was
able to change what the incoming reference pointed to in memory. The golden rule to keep in mind when
passing reference types is the following:

e Ifareference type is passed by reference, the callee may change the values of the
object’s state data, as well as the object it is referencing.

e Ifareference type is passed by value, the callee may change the values of the object’s
state data but not the object it is referencing.

149

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Source Code You can find the RefTypeValTypeParams project in the Chapter 4 subdirectory.

Final Details Regarding Value Types and Reference Types

To wrap up this topic, consider the information in Table 4-3, which summarizes the core distinctions
between value types and reference types.

Table 4-3. Value Types and Reference Types Comparison

Intriguing Question

Value Type

Reference Type

Where are objects allocated?

How is a variable represented?

What is the base type?

Can this type function as a base
to other types?

What is the default parameter
passing behavior?

Can this type override System.
Object.Finalize()?

Can I define constructors for
this type?

When do variables of this type
die?

Allocated on the stack.

Value type variables are local
copies.

Implicitly extends System.
ValueType.

No. Value types are always sealed
and cannot be inherited from.

Variables are passed by value
(i.e., a copy of the variable is
passed into the called function).

No.

Yes, but the default constructor
is reserved (i.e., your custom
constructors must all have
arguments).

When they fall out of the defining
scope.

Allocated on the managed heap.

Reference type variables are
pointing to the memory occupied by
the allocated instance.

Can derive from any other type
(except System.ValueType), as long
as that type is not “sealed” (more
details on this in Chapter 6).

Yes. If the type is not sealed, it may
function as a base to other types.

For reference types, the reference is
copied by value.

Yes, indirectly (more details on this
in Chapter 13).

But, of course!

When the object is garbage
collected.

Despite their differences, value types and reference types both have the ability to implement interfaces

and may support any number of fields, methods, overloaded operators, constants, properties, and events.

Understanding C# Nullable Types

Let’s examine the role of the nullable data type using a Console Application project named NullableTypes.
Asyou know, C# data types have a fixed range and are represented as a type in the System namespace. For
example, the System.Boolean data type can be assigned a value from the set {true, false}. Now, recall
that all the numerical data types (as well as the Boolean data type) are value types. Value types can never be
assigned the value of null, as that is used to establish an empty object reference.

150

http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_13

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

static void Main(string[] args)
{
// Compiler errors!
// Value types cannot be set to null!
bool myBool = null;
int myInt = null;

// OK! Strings are reference types.
string myString = null;

C# supports the concept of nullable data types. Simply put, a nullable type can represent all the values
of its underlying type, plus the value null. Thus, if you declare a nullable bool, it could be assigned a value
from the set {true, false, null}. This can be extremely helpful when working with relational databases,
given that it is quite common to encounter undefined columns in database tables. Without the concept of a
nullable data type, there is no convenient manner in C# to represent a numerical data point with no value.

To define a nullable variable type, the question mark symbol (?) is suffixed to the underlying data
type. Do note that this syntax is legal only when applied to value types. If you attempt to create a nullable
reference type (including strings), you are issued a compile-time error. Like a non-nullable variable, local
nullable variables must be assigned an initial value before you can use them.

static void LocalNullableVariables()
{
// Define some local nullable variables.
int? nullablelInt = 10;
double? nullableDouble = 3.14;
bool? nullableBool = null;
char? nullableChar = 'a’;
int?[] arrayOfNullableInts = new int?[10];

// Error! Strings are reference types!
// string? s = "oops";

In C#, the ? suffix notation is a shorthand for creating an instance of the generic System.Nullable<T>
structure type. Although you will not examine generics until Chapter 9, it is important to understand that the
System.Nullable<T> type provides a set of members that all nullable types can make use of.

For example, you are able to programmatically discover whether the nullable variable indeed has been
assigned a null value using the HasValue property or the != operator. The assigned value of a nullable type
may be obtained directly or via the Value property. In fact, given that the ? suffix is just a shorthand for using
Nullable<T>, you could implement your LocalNullableVariables() method as follows:

static void LocalNullableVariablesUsingNullable()

{

// Define some local nullable types using Nullable<T>.

Nullable<int> nullableInt = 10;

Nullable<double> nullableDouble = 3.14;

Nullable<bool> nullableBool = null;

Nullable<char> nullableChar = 'a’';

Nullable<int>[] arrayOfNullableInts = new Nullable<int>[10];
}

151

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Working with Nullable Types

As stated, nullable data types can be particularly useful when you are interacting with databases, given that
columns in a data table may be intentionally empty (e.g., undefined). To illustrate, assume the following
class, which simulates the process of accessing a database that has a table containing two columns that
may be null. Note that the GetIntFromDatabase() method is not assigning a value to the nullable integer
member variable, while GetBoolFromDatabase() is assigning a valid value to the bool? member.

class DatabaseReader

{
// Nullable data field.
public int? numericValue = null;
public bool? boolValue = true;

// Note the nullable return type.
public int? GetIntFromDatabase()
{ return numericValue; }

// Note the nullable return type.
public bool? GetBoolFromDatabase()
{ return boolvValue; }

}

Now, assume the following Main() method, which invokes each member of the DatabaseReader class
and discovers the assigned values using the HasValue and Value members, as well as using the C# equality
operator (not equal, to be exact):

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Nullable Data *¥¥**\n");
DatabaseReader dr = new DatabaseReader();

// Get int from "database".
int? i = dr.GetIntFromDatabase();
if (i.HasValue)
Console.Writeline("Value of 'i' is: {0}", i.Value);
else
Console.WriteLine("Value of 'i' is undefined.");
// Get bool from "database".
bool? b = dr.GetBoolFromDatabase();

if (b != null)
Console.WritelLine("Value of 'b' is: {0}", b.Value);
else

Console.WriteLine("Value of 'b' is undefined.");
Console.ReadLine();

152

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

The Null Coalescing Operator

The next aspect to be aware of is any variable that might have a null value (i.e., a reference-type variable

or a nullable value-type variable) can make use of the C# ?? operator, which is formally termed the null
coalescing operator. This operator allows you to assign a value to a nullable type if the retrieved value is in
fact null. For this example, assume you want to assign a local nullable integer to 100 if the value returned
from GetIntFromDatabase() is null (of course, this method is programmed to always return null, but I am
sure you get the general idea).

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Nullable Data *¥***\n");
DatabaseReader dr = new DatabaseReader();

// If the value from GetIntFromDatabase() is null,
// assign local variable to 100.

int myData = dr.GetIntFromDatabase() ?? 100;
Console.WriteLine("Value of myData: {0}", myData);
Console.ReadlLine();

The benefit of using the ?? operator is that it provides a more compact version of a traditional if/else
condition. However, if you want, you could have authored the following functionally equivalent code to
ensure that if a value comes back as null, it will indeed be set to the value 100:

// Long-hand notation not using ?? syntax.
int? moreData = dr.GetIntFromDatabase();
if (!moreData.HasValue)
moreData = 100;
Console.WritelLine("Value of moreData: {0}", moreData);

The Null Conditional Operator

When you are writing software, it is common to check incoming parameters, which are values returned from
type members (methods, properties, indexers), against the value null. For example, let’s assume you have

a method that takes a string array as a single parameter. To be safe, you might want to test for null before
proceeding. In that way, you will not get a runtime error if the array is empty. The following would be a
traditional way to perform such a check:

static void TesterMethod(string[] args)

{

// We should check for null before accessing the array data!
if (args != null)
{

Console.WriteLine($"You sent me {args.Length} arguments.");
}
}

153

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Here, you use a conditional scope to ensure that the Length property of the string array will not be
accessed if the array is null. If the caller failed to make an array of data and called your method like so, you
are still safe and will not trigger a runtime error:

TesterMethod(null);

With the current release of the C# language, it is now possible to leverage the null conditional operator
token (a question mark placed after a variable type but before an access operator) to simplify the previous
error checking. Rather than explicitly building a conditional statement to check for null, you can now write
the following:

static void TesterMethod(string[] args)

{
// We should check for null before accessing the array datal
Console.WriteLine($"You sent me {args?.Length} arguments.");

}

In this case, you are not using a conditional statement. Rather, you are suffixing the ? operator directly
after the string array variable. If this is null, its call to the Length property will not throw a runtime error.
If you want to print an actual value, you could leverage the null coalescing operator to assign a default value
as so:

Console.WriteLine($"You sent me {args?.Length ?? 0} arguments.");

There are some additional areas of coding where the new C# 6.0 null conditional operator will be quite
handy, especially when working with delegates and events. However, since those topics are not addressed
until later in the book (see Chapter 10), you will hold on any additional use cases. With this, your initial
investigation of the C# programming language is complete! In Chapter 5, you will begin to dig into the details
of object-oriented development.

Source Code You can find the NullableTypes application in the Chapter 4 subdirectory.

Tuples (New)

To wrap up this chapter, let’'s examine the role of tuples using a final Console Application project named
FunWithTuples. As mentioned earlier in this chapter, one way to use out parameters is to retrieve more than
one value from a method call. While doing that certainly works, it’s a bit of a hack. It's much better to use a
construct designed for this.

Tuples, which are lightweight data structures that contain multiple fields, were actually added in C# 6
but in a very limited way. The fields are not validated, you cannot define your own methods, and (perhaps)
more importantly each property is a reference type, potentially causing memory and performance issues.

In C# 7, tuples use the new ValueTuple data type instead of reference types, potentially saving
significant memory. The ValueTuple data type creates different structs based on the number of properties
for a tuple. An additional feature added in C# 7 is that each property in a tuple can be assigned a specific
name (just like variables), greatly enhancing the usability.

154

http://dx.doi.org/10.1007/978-1-4842-3018-3_10
http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Getting Started with Tuples

Enough theory, let’s write some code! To create a tuple, simply enclose the values to be assigned to the tuple
in parentheses, as follows:

("a", 5, "c")

Notice that they don’t all have to be the same data type. The parenthetical construct is also used to
assign the tuple to a variable (or you can use the var keyword and the compiler will assign the data types
for you). To assign the previous example to a variable, the following two lines achieve the same thing. The
values variable will be a tuple with two string properties and an int property.

(string, int, string) values = ("a", 5, "c");

var values = ("a", 5, "c");

Note If the preceding code doesn’t compile, you will need to install the System.ValueTuple NuGet
package. Right-click the project name in Solution Explorer, select Manage NuGet Packages, and when the NuGet
Package Manager loads, click Browse in the top-left corner. Next, enter System.valueTuple in the search box
and then click install. I'm running VS 2017 Community edition on Windows 10 and didn’t need to install it for
tuple support. However, your configuration may be different.

By default, the compiler assigns each property the name ItemX, where X represents the one based
position in the tuple. For the previous example, the property names are Item1, Item2, and Item3. Accessing
them is done as follows:

Console.Writeline($"First item: {values.Itemi}");
Console.Writeline($"Second item: {values.Item2}");
Console.WritelLine($"Third item: {values.Item3}");

Specific names can also be added to each property in the tuple on either the right side or the left side of
the statement. While it is not a compiler error to assign names on both sides of the statement, if you do, the
right side will be ignored, and only the left-side names are used. The following two lines of code show setting
the names on the left and the right and achieve the same end:

(string FirstlLetter, int TheNumber, string SecondLetter) valuesWithNames = ("a", 5, "c");
var valuesWithNames2 = (FirstLetter: "a", TheNumber: 5, SecondLetter: "c");

Now the properties on the tuple can be accessed using the field names as well as the ItemX notation, as
shown in the following code:

Console.WriteLine($"First item: {valuesWithNames.FirstLetter}");
Console.WriteLine($"Second item: {valuesWithNames.TheNumber}");
Console.WritelLine($"Third item: {valuesWithNames.SecondLetter}");
//Using the item notation still works!

Console.Writeline($"First item: {valuesWithNames.Item1}");
Console.WriteLine($"Second item: {valuesWithNames.Item2}");
Console.WriteLine($"Third item: {valuesWithNames.Item3}");

155

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Note that when setting the names on the right, you must use the keyword var. Setting the data types
specifically (even without custom names) triggers the compiler to use the left side, assign the properties
using the ItemX notation, and ignore any of the custom names set on the right. The following two examples
ignore the Customl1 and Custom2 names:

(int, int) example = (Customi:5, Custom2:7);
(int Field1, int Field2) example = (Customi:5, Custom2:7);

It is also important to call out that the custom field names exist only at compile time and aren’t available
when inspecting the tuple at runtime using reflection (reflection is covered in Chapter 15).

Inferred Variable Names (C# 7.1)

New in C# 7.1 is the ability for C# to infer the variable names of tuples under certain conditions. However,
7.1 must be enabled for this to work. For example, the following code will initially give compile errors with
the tuple property names (on the final line):

Console.WriteLine("=> Inferred Tuple Names");

var foo = new {Propl = "first", Prop2 = "second"};
var bar = (foo.Propi, foo.Prop2);
Console.Writeline($"{bar.Prop1};{bar.Prop2}");

Hover over the error, and let Visual Studio update the project to use C# 7.1 (or change it manually as you
did in Chapter 2). Once the project is updated, the tuple infers the property names when the tuple is created.

Tuples As Method Return Values

Earlier in this chapter, out parameters were used to return more than one value from a method call. There
are additional ways to do this, such as creating a class or structure specifically to return the values. But if
this class or struct is only to be used as a data transport for one method, that is extra work and extra code
that doesn’t need to be developed. Tuples are perfectly suited for this task, are lightweight, and are easy to
declare and use.

This is the one of the examples from the out parameter section. It returns three values but requires
three parameters passed in as transport mechanisms for the calling code.

static void FillTheseValues(out int a, out string b, out bool c)

{
a=9;
b = "Enjoy your string.";
= true;
}

By using a tuple, you can remove the parameters and still get the three values back.

static (int a,string b,bool c) FillTheseValues()

{

return (9,"Enjoy your string.",true);

}

156

http://dx.doi.org/10.1007/978-1-4842-3018-3_15
http://dx.doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 4 * CORE C# PROGRAMMING CONSTRUCTS, PART II

Calling this method is as simple as calling any other method.

var samples = FillTheseValues();
Console.Writeline($"Int is: {samples.a}");
Console.WriteLine($"String is: {samples.b}");
Console.WriteLine($"Boolean is: {samples.c}");

Perhaps a better example is deconstructing a full name into its individual parts (first, middle, last). The
following code takes in a full name and returns a tuple with the different parts:

static (string first, string middle, string last) SplitNames(string fullName)
{

//do what is needed to split the name apart

return ("Philip", "F", "Japikse");
}

Discards with Tuples

Following up on the SplitNames () example, suppose you know that you need only the first and last names
and don’t care about the first. By providing variable names for the values you want returned and filling in the
unneeded values with an underscore (_) placeholder, you can refine the return value like this:

var (first, , last) = SplitNames("Philip F Japikse");
Console.WritelLine($"{first}:{last}");

The middle name value of the tuple is discarded.

Deconstructing Tuples

Deconstructing is the term given when separating out the properties of a tuple to be used individually.
FillTheseValues did just that. But there is another use for this pattern that can be helpful, and that is
deconstructing custom types.

Take a shorter version of the Point structure used earlier in this chapter. A new method named
Deconstruct() has been added to return the individual properties of the Point instance as a tuple with
properties named XPos and YPos.

struct Point

{
// Fields of the structure.
public int X;
public int Y;
// A custom constructor.
public Point(int XPos, int YPos)
{
X = XPos;
Y = YPos;
}
public (int XPos, int YPos) Deconstruct() =» (X, Y);
}

157

CHAPTER 4 © CORE C# PROGRAMMING CONSTRUCTS, PART Il

Notice the new Deconstruct() method, shown in bold in the previous code listing. This method can be
named anything, but by convention it is typically named Deconstruct (). This allows a single method call to
get the individual values of the structure by returning a tuple.

Point p = new Point(7,5);

var pointValues = p.Deconstruct();
Console.WriteLine($"X is: {pointValues.XPos}");
Console.Writeline($"Y is: {pointValues.YPos}");

Source Code You can find the FunWithTuples application in the Chapter 4 subdirectory.

Summary

This chapter began with an examination arrays. Then we discussed the C# keywords that allow you to build
custom methods. Recall that by default parameters are passed by value; however, you may pass a parameter
by reference if you mark it with ref or out. You also learned about the role of optional or named parameters
and how to define and invoke methods taking parameter arrays.

After you investigated the topic of method overloading, the bulk of this chapter examined several details
regarding how enumerations and structures are defined in C# and represented within the .NET base class
libraries. Along the way, you examined several details regarding value types and reference types, including
how they respond when passing them as parameters to methods and how to interact with nullable data
types and variables that might be null (e.g., reference-type variables and nullable value-type variables)
using the ? and ?? operators.

The final section of the chapter looked into a long-anticipated feature in C#, tuples. After getting an
understanding of what they are and how they work, you used them to return multiple values from methods
as well as to deconstruct custom types.

158

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

PART il

Object-Oriented Programming
with C#

CHAPTER 5

Understanding Encapsulation -

In Chapters 3 and 4, you investigated a number of core syntactical constructs that are commonplace to any
.NET application you might be developing. Here, you will begin your examination of the object-oriented
capabilities of C#. The first order of business is to examine the process of building well-defined class types
that support any number of constructors. After you understand the basics of defining classes and allocating
objects, the remainder of this chapter will examine the role of encapsulation. Along the way, you will

learn how to define class properties and come to understand the details of the static keyword, object
initialization syntax, read-only fields, constant data, and partial classes.

Introducing the G# Class Type

As far as the .NET platform is concerned, the most fundamental programming construct is the class type.
Formally, a class is a user-defined type that is composed of field data (often called member variables)
and members that operate on this data (such as constructors, properties, methods, events, and so forth).
Collectively, the set of field data represents the “state” of a class instance (otherwise known as an object).
The power of object-oriented languages, such as C#, is that by grouping data and related functionality in a
unified class definition, you are able to model your software after entities in the real world.

To get the ball rolling, create a new C# Console Application project named SimpleClassExample. Next,
insert a new class file (named Car.cs) into your project using the Project » Add Class menu selection.
Choose the Class icon from the resulting dialog box, as shown in Figure 5-1, and click the Add button.

© Andrew Troelsen and Philip Japikse 2017 161
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_5

https://doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Add New Itemn - SimpleClassExample ? *
4 Installed Sort by: Default - 3= Search Installed Templates (Ctrl+E) 0 ~
4 Visual C# Items @ Class Visual C# Items * Type: Visual C# ltems
Cocm e An empty class definition
Data .] Class for U-SQL Visual C# Items
General
b Web o0 Interface Visual C# Items
Windows Forms
WPF Windows Form Visual C# Items
I ASP.NET Core
SQL Server .;.j User Control Visual C# Items
Storm Items
| isual C& |
b Online &I | Component Class Visual C# ltems
® User Control (WPF) Visual C# ltems
4“
About Box Visual C# Items
= bk
Name: Carcs
[add || cancel

Figure 5-1. Inserting a new C# class type

A class is defined in C# using the class keyword. Here is the simplest possible declaration:

class Car

{
}

After you have defined a class type, you will need to consider the set of member variables that will be
used to represent its state. For example, you might decide that cars maintain an int data type to represent

the current speed and a string data type to represent the car’s friendly pet name. Given these initial design
notes, update your Car class as follows:

class Car

{
// The 'state' of the Car.
public string petName;
public int currSpeed;

}

Notice that these member variables are declared using the public access modifier. Public members of
a class are directly accessible once an object of this type has been created. Recall the term object is used to
describe an instance of a given class type created using the new keyword.

Note Field data of a class should seldom (if ever) be defined as public. To preserve the integrity of your
state data, it is a far better design to define data as private (or possibly protected) and allow controlled access
to the data via properties (as shown later in this chapter). However, to keep this first example as simple as
possible, public data fits the bill.

162

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

After you have defined the set of member variables representing the state of the class, the next design
step is to establish the members that model its behavior. For this example, the Car class will define one
method named SpeedUp() and another named PrintState(). Update your class as so:

class Car

{
// The 'state' of the Car.
public string petName;
public int currSpeed;

// The functionality of the Car.
// Using the expression-bodied member syntax introduced in C# 6
public void PrintState()

=> Console.WriteLine("{0} is going {1} MPH.", petName, currSpeed);

public void SpeedUp(int delta)
=> currSpeed += delta;
}

PrintState() is more or less a diagnostic function that will simply dump the current state of a given Car
object to the command window. SpeedUp () will increase the speed of the Car object by the amount specified
by the incoming int parameter. Now, update your Main() method in the Program class with the following
code:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Class Types *¥¥*<\n");

// Allocate and configure a Car object.
Car myCar = new Car();

myCar.petName = "Henry";
myCar.currSpeed = 10;

// Speed up the car a few times and print out the
// new state.
for (int i = 0; i <= 10; i++)
{
myCar.SpeedUp(5);
myCar.PrintState();
}

Console.ReadlLine();

163

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

After you run your program, you will see that the Car variable (myCar) maintains its current state
throughout the life of the application, as shown in the following output:

*¥¥xxx Fun with Class Types *****

Henry is going 15 MPH.
Henry is going 20 MPH.
Henry is going 25 MPH.
Henry is going 30 MPH.
Henry is going 35 MPH.
Henry is going 40 MPH.
Henry is going 45 MPH.
Henry is going 50 MPH.
Henry is going 55 MPH.
Henry is going 60 MPH.
Henry is going 65 MPH.

Allocating Objects with the new Keyword

As shown in the previous code example, objects must be allocated into memory using the new keyword.
If you do not use the new keyword and attempt to use your class variable in a subsequent code statement,
you will receive a compiler error. For example, the following Main() method will not compile:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Class Types ***¥¥\n");

// Compiler error! Forgot to use 'new' to create object!
Car myCar;
myCar.petName = "Fred";

To correctly create an object using the new keyword, you may define and allocate a Car object on a single
line of code.

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Class Types ***¥¥\n");
Car myCar = new Car();
myCar.petName = "Fred";

As an alternative, if you want to define and allocate a class instance on separate lines of code, you may
do so as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Class Types ***¥¥\n");
Car myCar;

164

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

myCar = new Car();
myCar.petName = "Fred";

}

Here, the first code statement simply declares a reference to a yet-to-be-determined Car object. It is not
until you assign a reference to an object that this reference points to a valid object in memory.

In any case, at this point you have a trivial class that defines a few points of data and some basic operations.
To enhance the functionality of the current Car class, you need to understand the role of constructors.

Understanding Constructors

Given that objects have state (represented by the values of an object’s member variables), a programmer will
typically want to assign relevant values to the object’s field data before use. Currently, the Car class demands
that the petName and currSpeed fields be assigned on a field-by-field basis. For the current example, this

is not too problematic, given that you have only two public data points. However, it is not uncommon for

a class to have dozens of fields to contend with. Clearly, it would be undesirable to author 20 initialization
statements to set 20 points of data!

Thankfully, C# supports the use of constructors, which allow the state of an object to be established at
the time of creation. A constructor is a special method of a class that is called indirectly when creating an
object using the new keyword. However, unlike a “normal” method, constructors never have a return value
(not even void) and are always named identically to the class they are constructing.

The Role of the Default Constructor

Every C# class is provided with a “freebie” default constructor that you can redefine if need be. By definition,
a default constructor never takes arguments. After allocating the new object into memory, the default
constructor ensures that all field data of the class is set to an appropriate default value (see Chapter 3 for
information regarding the default values of C# data types).

If you are not satisfied with these default assignments, you may redefine the default constructor to suit
your needs. To illustrate, update your C# Car class as follows:

class Car

{
// The 'state' of the Car.
public string petName;
public int currSpeed;

// A custom default constructor.
public Car()

{
petName = "Chuck";
currSpeed = 10;
}
}

165

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

In this case, you are forcing all Car objects to begin life named Chuck at a rate of 10 mph. With this, you
are able to create a Car object set to these default values as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Class Types **¥¥¥\n");

// Invoking the default constructor.
Car chuck = new Car();

// Prints "Chuck is going 10 MPH."
chuck.PrintState();

Defining Custom Constructors

Typically, classes define additional constructors beyond the default. In doing so, you provide the object user
with a simple and consistent way to initialize the state of an object directly at the time of creation. Ponder the
following update to the Car class, which now supports a total of three constructors:

class Car

{
// The 'state' of the Car.
public string petName;
public int currSpeed;

// A custom default constructor.
public Car()
{
petName = "Chuck";
currSpeed = 10;

}

// Here, currSpeed will receive the
// default value of an int (zero).
public Car(string pn)
{

petName = pn;

}

// Let caller set the full state of the Car.
public Car(string pn, int cs)

{
petName = pn;
currSpeed = cs;
}
}

166

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

Keep in mind that what makes one constructor different from another (in the eyes of the C# compiler)
is the number of and/or type of constructor arguments. Recall from Chapter 4, when you define a method
of the same name that differs by the number or type of arguments, you have overloaded the method. Thus,
the Car class has overloaded the constructor to provide a number of ways to create an object at the time of
declaration. In any case, you are now able to create Car objects using any of the public constructors. Here’s
an example:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Class Types *¥¥*<\n");

// Make a Car called Chuck going 10 MPH.
Car chuck = new Car();
chuck.PrintState();

// Make a Car called Mary going 0 MPH.
Car mary = new Car("Mary");
mary.PrintState();

// Make a Car called Daisy going 75 MPH.
Car daisy = new Car("Daisy", 75);
daisy.PrintState();

}Encapsulation:constructors:

Constructors as Expression-Bodied Members (New)

C# 7 builds on the C# 6 expression-bodied member style, adding additional uses for the new style.
Constructors, finalizers, and get/set accessors on properties and indexers now accept the new syntax.
With this in mind, the previous constructor can be written like this:

// Here, currSpeed will receive the
// default value of an int (zero).
public Car(string pn) => petName = pn;

The second constructor is not a valid candidate, since expression bodied members are designed for
one-line methods.

The Default Constructor Revisited

Asyou have just learned, all classes are provided with a free default constructor. Thus, if you insert a new
class into your current project named Motorcycle, defined like so:

class Motorcycle

{
public void PopAWheely()

{

Console.WritelLine("Yeeeeeee Haaaaaeewww!");

}
}

167

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

you are able to create an instance of the Motorcycle type via the default constructor out of the box.

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Class Types *¥¥*<\n");
Motorcycle mc = new Motorcycle();
mc. PopAllheely();

i.

However, as soon as you define a custom constructor with any number of parameters, the default
constructor is silently removed from the class and is no longer available. Think of it this way: if you do not
define a custom constructor, the C# compiler grants you a default in order to allow the object user to allocate
an instance of your type with field data set to the correct default values. However, when you define a unique
constructor, the compiler assumes you have taken matters into your own hands.

Therefore, if you want to allow the object user to create an instance of your type with the default
constructor, as well as your custom constructor, you must explicitly redefine the default. To this end,
understand that in a vast majority of cases, the implementation of the default constructor of a class is
intentionally empty, as all you require is the ability to create an object with default values. Consider the
following update to the Motorcycle class:

class Motorcycle

{

public int driverIntensity;

public void PopAWheely()
{
for (int i = 0; i <= driverIntensity; i++)
{
Console.WritelLine("Yeeeeeee Haaaaaeewww!");
}
}

// Put back the default constructor, which will
// set all data members to default values.
public Motorcycle() {}

// Our custom constructor.
public Motorcycle(int intensity)
{
driverIntensity = intensity;
}
}

Note Now that you better understand the role of class constructors, here is a nice shortcut. The Visual
Studio IDE provides the ctor code snippet. When you type ctor and press the Tab key twice, the IDE will
automatically define a custom default constructor. You can then add custom parameters and implementation
logic. Give it a try.

168

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

The Role of the this Keyword

C# supplies a this keyword that provides access to the current class instance. One possible use of the this
keyword is to resolve scope ambiguity, which can arise when an incoming parameter is named identically
to a data field of the class. Of course, you could simply adopt a naming convention that does not result in
such ambiguity, however; to illustrate this use of the this keyword, update your Motorcycle class with a
new string field (named name) to represent the driver’s name. Next, add a method named SetDriverName()
implemented as follows:

class Motorcycle

{

public int driverIntensity;

// New members to represent the name of the driver.
public string name;
public void SetDriverName(string name)

{

name = name;

}

Although this code will compile just fine, Visual Studio will display a warning message informing you
that you have assigned a variable back to itself! To illustrate, update Main() to call SetDriverName() and
then print out the value of the name field. You might be surprised to find that the value of the name field is an
empty string!

// Make a Motorcycle with a rider named Tiny?

Motorcycle ¢ = new Motorcycle(5);

c.SetDriverName("Tiny");

c.PopAiheely();

Console.WriteLine("Rider name is {0}", c.name); // Prints an empty name value!

The problem is that the implementation of SetDriverName() is assigning the incoming parameter back
to itself given that the compiler assumes name is referring to the variable currently in the method scope rather
than the name field at the class scope. To inform the compiler that you want to set the current object’s name
data field to the incoming name parameter, simply use this to resolve the ambiguity.

public void SetDriverName(string name)

{

this.name = name;

}

Do understand that if there is no ambiguity, you are not required to make use of the this keyword when
a class wants to access its own data fields or members, as this is implied. For example, if you rename the
string data member from name to driverName (which will also require you to update your Main() method),
the use of this is optional as there is no longer a scope ambiguity.

class Motorcycle

{

public int driverIntensity;
public string driverName;

169

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

public void SetDriverName(string name)

{
// These two statements are functionally the same.
driverName = name;
this.driverName = name;

}

Even though there is little to be gained when using this in unambiguous situations, you might still
find this keyword useful when implementing class members, as IDEs such as Visual Studio will enable
IntelliSense when this is specified. This can be helpful when you have forgotten the name of a class
member and want to quickly recall the definition. Consider Figure 5-2.

Motorcyclecs* + X FeETda Program.cs

| [ea] SimpleClassExample -; *% SimpleClassExample Motorcycle - § @ SetDriverName(string name) -
I 1

class Motorcycle
{

public int driverIntensity;

[/ New members to represent the name of the driver.
public string name;
= public void SetDriverName(string name) o —

{

this .hame = name;
}

@ driverintensity

. 7 Equals
public vo &
{ @ GetHashCode
for (¥ Getlype dverIntensity; i++)
{ ¥, MemberwiseClone
co [T (o sting Moto
H @ PopAWheely
} @ SetDriverName
2 ToString

// Put bacs tnme wersurt cunstructor, which will
// set all data members to default vaules.
public Motorcycle() { } v

ycle.name 3

|100% -~

Figure 5-2. The IntelliSense of this

Chaining Constructor Calls Using this

Another use of the this keyword is to design a class using a technique termed constructor chaining. This
design pattern is helpful when you have a class that defines multiple constructors. Given that constructors
often validate the incoming arguments to enforce various business rules, it can be quite common to find
redundant validation logic within a class’s constructor set. Consider the following updated Motorcycle:

class Motorcycle

{

public int driverIntensity;
public string driverName;

public Motorcycle() { }

170

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

// Redundant constructor logic!
public Motorcycle(int intensity)
{

if (intensity > 10)

intensity = 10;
}

driverIntensity = intensity;

}

public Motorcycle(int intensity, string name)
{ if (intensity > 10)

{ intensity = 10;

(];riverIntensity = intensity;

driverName = name;

}

Here (perhaps in an attempt to ensure the safety of the rider) each constructor is ensuring that
the intensity level is never greater than 10. While this is all well and good, you do have redundant code
statements in two constructors. This is less than ideal, as you are now required to update code in multiple
locations if your rules change (for example, if the intensity should not be greater than 5 rather than 10).

One way to improve the current situation is to define a method in the Motorcycle class that will validate
the incoming argument(s). If you were to do so, each constructor could make a call to this method before
making the field assignment(s). While this approach does allow you to isolate the code you need to update
when the business rules change, you are now dealing with the following redundancy:

class Motorcycle

{

public int driverIntensity;
public string driverName;

// Constructors.
public Motorcycle() { }

public Motorcycle(int intensity)

{
SetIntensity(intensity);

}

public Motorcycle(int intensity, string name)

{

SetIntensity(intensity);
driverName = name;

}

171

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

public void SetIntensity(int intensity)
{

if (intensity > 10)

{
}

driverIntensity = intensity;

}

intensity = 10;

A cleaner approach is to designate the constructor that takes the greatest number of arguments as the
“master constructor” and have its implementation perform the required validation logic. The remaining
constructors can make use of the this keyword to forward the incoming arguments to the master
constructor and provide any additional parameters as necessary. In this way, you need to worry only about
maintaining a single constructor for the entire class, while the remaining constructors are basically empty.

Here is the final iteration of the Motorcycle class (with one additional constructor for the sake of
illustration). When chaining constructors, note how the this keyword is “dangling” off the constructor’s
declaration (via a colon operator) outside the scope of the constructor itself.

class Motorcycle

{
public int driverIntensity;
public string driverName;

// Constructor chaining.
public Motorcycle() {}
public Motorcycle(int intensity)
: this(intensity, "") {}
public Motorcycle(string name)
: this(0, name) {}

// This is the 'master' constructor that does all the real work.
public Motorcycle(int intensity, string name)
{

if (intensity > 10)

{
}

driverIntensity = intensity;
driverName = name;

intensity = 10;

Understand that using the this keyword to chain constructor calls is never mandatory. However,
when you make use of this technique, you do tend to end up with a more maintainable and concise class
definition. Again, using this technique, you can simplify your programming tasks, as the real work is
delegated to a single constructor (typically the constructor that has the most parameters), while the other
constructors simply “pass the buck”

172

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

Note Recall from Chapter 4 that C# supports optional parameters. If you use optional parameters in your
class constructors, you can achieve the same benefits as constructor chaining, with considerably less code.
You will see how to do so in just a moment.

Observing Constructor Flow

On a final note, do know that once a constructor passes arguments to the designated master constructor
(and that constructor has processed the data), the constructor invoked originally by the caller will finish
executing any remaining code statements. To clarify, update each of the constructors of the Motorcycle class
with a fitting call to Console.WriteLine().

class Motorcycle

{
public int driverIntensity;
public string driverName;

// Constructor chaining.
public Motorcycle()
{

Console.WriteLine("In default ctor");

}

public Motorcycle(int intensity)
: this(intensity, "")
{

Console.WritelLine("In ctor taking an int");

}

public Motorcycle(string name)
: this(0, name)
{

Console.WritelLine("In ctor taking a string");

}

// This is the 'master' constructor that does all the real work.
public Motorcycle(int intensity, string name)
{

Console.WritelLine("In master ctor ");

if (intensity > 10)

{

intensity = 10;

}

driverIntensity = intensity;

driverName = name;

173

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Now, ensure your Main() method exercises a Motorcycle object as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with class Types *¥¥*<\n");

// Make a Motorcycle.

Motorcycle ¢ = new Motorcycle(5);
c.SetDriverName("Tiny");

c.PopAlheely();

Console.WritelLine("Rider name is {0}", c.driverName);
Console.ReadlLine();

With this, ponder the output from the previous Main() method.

*¥xxx Fun with class Types *¥*x*

In master ctor

In ctor taking an int
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Yeeeeeee Haaaaaeewww!
Rider name is Tiny

Asyou can see, the flow of constructor logic is as follows:
e You create your object by invoking the constructor requiring a single int.

e This constructor forwards the supplied data to the master constructor and provides
any additional startup arguments not specified by the caller.

e The master constructor assigns the incoming data to the object’s field data.

e Control is returned to the constructor originally called and executes any remaining
code statements.

The nice thing about using constructor chaining is that this programming pattern will work with any
version of the C# language and .NET platform. However, if you are targeting .NET 4.0 and higher, you can
further simplify your programming tasks by making use of optional arguments as an alternative to traditional
constructor chaining.

Revisiting Optional Arguments

In Chapter 4, you learned about optional and named arguments. Recall that optional arguments allow you
to define supplied default values to incoming arguments. If the caller is happy with these defaults, they are
not required to specify a unique value; however, they may do so to provide the object with custom data.

174

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

Consider the following version of Motorcycle, which now provides a number of ways to construct objects
using a single constructor definition:

class Motorcycle

{
// Single constructor using optional args.
public Motorcycle(int intensity = 0, string name = "")
{
if (intensity > 10)
{
intensity = 10;
}
driverIntensity = intensity;
driverName = name;
}
}

With this one constructor, you are now able to create a new Motorcycle object using zero, one, or two
arguments. Recall that named argument syntax allows you to essentially skip over acceptable default settings
(see Chapter 3).

static void MakeSomeBikes()
{
/! driverName = "", driverIntensity = 0
Motorcycle mi = new Motorcycle();
Console.WriteLine("Name= {0}, Intensity= {1}",
mi.driverName, mi.driverIntensity);

// driverName = "Tiny", driverIntensity = 0

Motorcycle m2 = new Motorcycle(name:"Tiny");

Console.WriteLine("Name= {0}, Intensity= {1}",
m2.driverName, m2.driverIntensity);

// driverName = "", driverIntensity = 7

Motorcycle m3 = new Motorcycle(7);

Console.WriteLine("Name= {0}, Intensity= {1}",
m3.driverName, m3.driverIntensity);

In any case, at this point you are able to define a class with field data (aka member variables) and
various operations such as methods and constructors. Next up, let’s formalize the role of the static
keyword.

Source Code You can find the SimpleClassExample project in the Chapter 5 subdirectory.

175

http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Understanding the static Keyword

A C# class may define any number of static members, which are declared using the static keyword. When
you do so, the member in question must be invoked directly from the class level, rather than from an object
reference variable. To illustrate the distinction, consider your good friend System.Console. As you have
seen, you do not invoke the WritelLine() method from the object level, as shown here:

// Compiler error! WriteLine() is not an object level method!
Console ¢ = new Console();
c.WriteLine("I can't be printed...");

but instead simply prefix the class name to the static WritelLine() member.

// Correct! WritelLine() is a static method.
Console.WritelLine("Much better! Thanks...");

Simply put, static members are items that are deemed (by the class designer) to be so commonplace
that there is no need to create an instance of the class before invoking the member. While any class can
define static members, they are quite commonly found within utility classes. By definition, a utility class is a
class that does not maintain any object-level state and is not created with the new keyword. Rather, a utility
class exposes all functionality as class-level (aka static) members.

For example, if you were to use the Visual Studio Object Browser (via the View » Object Browser menu
item) to view the System namespace of mscorlib.d1l, you would see that all the members of the Console,
Math, Environment, and GC classes (among others) expose all their functionality via static members. These
are but a few utility classes found within the .NET base class libraries.

Again, be aware that static members are not only found in utility classes; they can be part of any class
definition at all. Just remember that static members promote a given item to the class level rather than the
object level. As you will see over the next few sections, the static keyword can be applied to the following:

e Dataofaclass

e Methods of a class

e Properties of a class

e A constructor

e The entire class definition

¢ In conjunction with the C# using keyword

Let’s see each of our options, beginning with the concept of static data.

Note You will examine the role of static properties later in this chapter, while examining the properties
themselves.

Defining Static Field Data

Most of the time when designing a class, you define data as instance-level data or, said another way, as
nonstatic data. When you define instance-level data, you know that every time you create a new object, the
object maintains its own independent copy of the data. In contrast, when you define static data of a class, the
memory is shared by all objects of that category.

176

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

To see the distinction, create a new Console Application project named StaticDataAndMembers. Now,
insert a new class into your project named SavingsAccount. Begin by defining a point of instance-level data
(to model the current balance) and a custom constructor to set the initial balance.

// A simple savings account class.
class SavingsAccount
{

// Instance-level data.

public double currBalance;

public SavingsAccount(double balance)

{
currBalance = balance;
}
}

When you create SavingsAccount objects, memory for the currBalance field is allocated for each
object. Thus, you could create five different SavingsAccount objects, each with their own unique balance.
Furthermore, if you change the balance on one account, the other objects are not affected.

Static data, on the other hand, is allocated once and shared among all objects of the same class
category. Add a static point of data named currInterestRate to the SavingsAccount class, which is set to a
default value of 0.04.

// A simple savings account class.
class SavingsAccount

{

// Instance-level data.
public double currBalance;

// A static point of data.
public static double currInterestRate = 0.04;

public SavingsAccount(double balance)

{

}
}

currBalance = balance;

If you were to create three instances of SavingsAccount in Main() as follows:

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Static Data *****\n");
SavingsAccount s1 = new SavingsAccount(50);
SavingsAccount s2 = new SavingsAccount(100);
SavingsAccount s3 = new SavingsAccount(10000.75);
Console.ReadLine();

177

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

the in-memory data allocation would look something like Figure 5-3.

Savings Account:S1

currBalance=50 \
Savings Account:S2

— currinterestRate=.04

currBalance=100
Savings Account:S3 /

currBalance=10000.75

Figure 5-3. Static data is allocated once and shared among all instances of the class

Here, the assumption is that all saving accounts should have the same interest rate. Because static data
is shared by all objects of the same category, if you were to change it in any way, all objects will “see” the new
value the next time they access the static data, as they are all essentially looking at the same memory location.
To understand how to change (or obtain) static data, you need to consider the role of static methods.

Defining Static Methods

Let’s update the SavingsAccount class to define two static methods. The first static method
(GetInterestRate()) will return the current interest rate, while the second static method
(SetInterestRate()) will allow you to change the interest rate.

// A simple savings account class.
class SavingsAccount

{

// Instance-level data.
public double currBalance;

// A static point of data.
public static double currInterestRate = 0.04;

public SavingsAccount(double balance)

currBalance = balance;

}

// Static members to get/set interest rate.
public static void SetInterestRate(double newRate)
{ currlnterestRate = newRate; }

public static double GetInterestRate()
{ return currInterestRate; }

178

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Now, observe the following usage:

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Static Data **¥¥k¥\n");
SavingsAccount s1 = new SavingsAccount(50);
SavingsAccount s2 = new SavingsAccount(100);

// Print the current interest rate.
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());

// Make new object, this does NOT 'reset' the interest rate.
SavingsAccount s3 = new SavingsAccount(10000.75);
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.CetInterestRate());

Console.ReadLine();

The output of the previous Main() is shown here:

Fkrkk Fun with Static Data *¥*x*

Interest Rate is: 0.04
Interest Rate is: 0.04

As you can see, when you create new instances of the SavingsAccount class, the value of the static data
is not reset, as the CLR will allocate the static data into memory exactly one time. After that point, all objects
of type SavingsAccount operate on the same value for the static currInterestRate field.

When designing any C# class, one of your design challenges is to determine which pieces of data should
be defined as static members and which should not. While there are no hard-and-fast rules, remember that
a static data field is shared by all objects of that type. Therefore, if you are defining a point of data that all
objects should share between them, static is the way to go.

Consider what would happen if the interest rate variable were not defined using the static keyword.
This would mean every SavingsAccount object would have its own copy of the currInterestRate field.
Now, assume you created 100 SavingsAccount objects and needed to change the interest rate. That would
require you to call the SetInterestRate() method 100 times! Clearly, this would not be a useful way to
model “shared data.” Again, static data is perfect when you have a value that should be common to all
objects of that category.

Note Itis a compiler error for a static member to reference nonstatic members in its implementation. On a
related note, it is an error to use the this keyword on a static member because this implies an object!

Defining Static Constructors

A typical constructor is used to set the value of an object’s instance-level data at the time of creation.
However, what would happen if you attempted to assign the value of a static point of data in a typical
constructor? You might be surprised to find that the value is reset each time you create a new object!

179

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

To illustrate, assume you have updated the SavingsAccount class constructor as follows (also note you

are no longer assigning the currInterestRate field inline):

class SavingsAccount

{

public double currBalance;
public static double currInterestRate;

// Notice that our constructor is setting

// the static currInterestRate value.

public SavingsAccount(double balance)

{
currInterestRate = 0.04; // This is static data!
currBalance = balance;

}

Now, assume you have authored the following code in Main():

static void Main(string[] args)

{

Console.WritelLine("***** Fun with Static Data *****\n");

// Make an account.
SavingsAccount s1 = new SavingsAccount(50);

// Print the current interest rate.
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.CetInterestRate());

// Try to change the interest rate via property.
SavingsAccount.SetInterestRate(0.08);

// Make a second account.
SavingsAccount s2 = new SavingsAccount(100);

// Should print 0.08...right??

Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());
Console.ReadLine();

If you executed the previous Main() method, you would see that the currInterestRate variable is reset

each time you create a new SavingsAccount object, and it is always set to 0.04. Clearly, setting the value of

static data in a normal instance-level constructor sort of defeats the whole purpose. Every time you make a

new object, the class-level data is reset! One approach to setting a static field is to use member initialization
syntax, as you did originally.

class SavingsAccount

public double currBalance;

180

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

// A static point of data.
public static double currInterestRate = 0.04;

This approach will ensure the static field is assigned only once, regardless of how many objects you create.
However, what if the value for your static data needed to be obtained at runtime? For example, in a typical
banking application, the value of an interest rate variable would be read from a database or external file.
Performing such tasks usually requires a method scope such as a constructor to execute the code statements.

For this reason, C# allows you to define a static constructor, which allows you to safely set the values of
your static data. Consider the following update to your class:

class SavingsAccount

{

public double currBalance;
public static double currInterestRate;

public SavingsAccount(double balance)

{
}

currBalance = balance;

// A static constructor!

static SavingsAccount()

{
Console.WritelLine("In static ctor!");
currlnterestRate = 0.04;

}

Simply put, a static constructor is a special constructor that is an ideal place to initialize the values of
static data when the value is not known at compile time (e.g., you need to read in the value from an external
file, read in the value from a database, generate a random number, or whatnot). If you were to rerun the
previous Main() method, you would find the output you expect. Note that the message “In static ctor!” prints
only one time, as the CLR calls all static constructors before the first use (and never calls them again for that
instance of the application).

Bk¥Rk Fun with Static Data *****

In static ctor!
Interest Rate is: 0.04
Interest Rate is: 0.08

Here are a few points of interest regarding static constructors:

e Agiven class may define only a single static constructor. In other words, the static
constructor cannot be overloaded.

e Astatic constructor does not take an access modifier and cannot take any
parameters.

181

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

e Astatic constructor executes exactly one time, regardless of how many objects of the
type are created.

e The runtime invokes the static constructor when it creates an instance of the class or
before accessing the first static member invoked by the caller.

e The static constructor executes before any instance-level constructors.

Given this modification, when you create new SavingsAccount objects, the value of the static data is
preserved, as the static member is set only one time within the static constructor, regardless of the number
of objects created.

Source Code The StaticDataAndMembers project is included in the Chapter 5 subdirectory.

Defining Static Classes

It is also possible to apply the static keyword directly on the class level. When a class has been defined as
static, it is not creatable using the new keyword, and it can contain only members or data fields marked with
the static keyword. If this is not the case, you receive compiler errors.

Note Recall that a class (or structure) that exposes only static functionality is often termed a utility class.
When designing a utility class, it is good practice to apply the static keyword to the class definition.

At first glance, this might seem like a fairly odd feature, given that a class that cannot be created does
not appear all that helpful. However, if you create a class that contains nothing but static members and/
or constant data, the class has no need to be allocated in the first place! To illustrate, create a new Console
Application project named SimpleUtilityClass. Next, define the following class:

// Static classes can only
// contain static members!
static class TimeUtilClass

{

public static void PrintTime()
=> Console.WriteLine(Now.ToShortTimeString());

public static void PrintDate()
=> Console.Writeline(Today.ToShortDateString());
Given that this class has been defined with the static keyword, you cannot create an instance of
TimeUtilClass using the new keyword. Rather, all functionality is exposed from the class level.
static void Main(string[] args)

{

Console.WritelLine("***** Fun with Static Classes *¥kk¥k\n");

182

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

// This is just fine.
TimeUtilClass.PrintDate();
TimeUtilClass.PrintTime();

// Compiler error! Can't create instance of static classes!
TimeUtilClass u = new TimeUtilClass ();

Console.ReadlLine();

Importing Static Members via the C# using Keyword

C# 6 added support for importing static members with the using keyword. To illustrate, consider the C# file
currently defining the utility class. Because you are making calls to the WritelLine() method of the Console
class, as well as the Now property of the DateTime class, you must have a using statement for the System
namespace. Since the members of these classes are all static, you could alter your code file with the following
static using directives:

// Import the static members of Console and DateTime.
using static System.Console;
using static System.DateTime;

With these “static imports,” the remainder of your code file is able to directly use the static members
of the Console and DateTime class, without the need to prefix the defining class (although that would still
be just fine, provided that you have imported the System namespace). For example, you could update your
utility class like so:

static class TimeUtilClass

{
public static void PrintTime() => WriteLine(Now.ToShortTimeString());

public static void PrintDate() => Writeline(Today.ToShortDateString());
}

You could argue that this iteration of the class is a bit cleaner in that you have a slightly smaller
codebase. A more realistic example of code simplification might involve a C# class that is making substantial
use of the System.Math class (or some other utility class). Since this class has nothing but static members,
it could be somewhat easier to have a static using statement for this type and then directly call into the
members of the Math class in your code file.

However, be aware that overuse of static import statements could result in potential confusion. First,
what if multiple classes define a WritelLine() method? The compiler is confused and so are others reading
your code. Second, unless a developer is familiar with the .NET code libraries, he or she might not know that
WritelLine() is a member of the Console class. Unless a person were to notice the set of static imports at the
top of a C# code file, they might be quite unsure where this method is actually defined. For these reasons,

I will limit the use of static using statements in this text.

In any case, at this point in the chapter, you should feel comfortable defining simple class types
containing constructors, fields, and various static (and nonstatic) members. Now that you have the basics
of class construction under your belt, you can formally investigate the three pillars of object-oriented
programming.

183

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Source Code You can find the SimpleUtilityClass project in the Chapter 5 subdirectory.

Defining the Pillars of 00OP

All object-oriented languages (C#, Java, C++, Visual Basic, etc.) must contend with three core principles,
often called the pillars of object-oriented programming (OOP).

e Encapsulation: How does this language hide an object’s internal implementation
details and preserve data integrity?

e Inheritance: How does this language promote code reuse?
e Polymorphism: How does this language let you treat related objects in a similar way?

Before digging into the syntactic details of each pillar, it is important that you understand the basic role
of each. Here is an overview of each pillar, which will be examined in full detail over the remainder of this
chapter and the next.

The Role of Encapsulation

The first pillar of OOP is called encapsulation. This trait boils down to the language’s ability to hide
unnecessary implementation details from the object user. For example, assume you are using a class named
DatabaseReader, which has two primary methods, named Open() and Close().

// Assume this class encapsulates the details of opening and closing a database.
DatabaseReader dbReader = new DatabaseReader();
dbReader.Open(@"C:\AutoLot.mdf");

// Do something with data file and close the file.
dbReader.Close();

The fictitious DatabaseReader class encapsulates the inner details of locating, loading, manipulating,
and closing a data file. Programmers love encapsulation, as this pillar of OOP keeps coding tasks simpler.
There is no need to worry about the numerous lines of code that are working behind the scenes to carry out
the work of the DatabaseReader class. All you do is create an instance and send the appropriate messages
(e.g., “Open the file named AutoLot.mdf located on my C drive”).

Closely related to the notion of encapsulating programming logic is the idea of data protection. Ideally,
an object’s state data should be specified using the private (or possibly protected) keyword. In this way,
the outside world must ask politely in order to change or obtain the underlying value. This is a good thing, as
publicly declared data points can easily become corrupted (ideally by accident rather than intent!). You will
formally examine this aspect of encapsulation in just a bit.

The Role of Inheritance

The next pillar of OOP, inheritance, boils down to the language’s ability to allow you to build new class
definitions based on existing class definitions. In essence, inheritance allows you to extend the behavior of
a base (or parent) class by inheriting core functionality into the derived subclass (also called a child class).
Figure 5-4 shows a simple example.

184

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

Object ¥
Class
\ D
-
Shape ¥
Class
.'/\n
f Hexagon ¥
Class
= Shape

Figure 5-4. The “is-a” relationship

You can read the diagram in Figure 5-4 as “A Hexagon is-a Shape that is-an Object.” When you have
classes related by this form of inheritance, you establish “is-a” relationships between types. The “is-a”
relationship is termed inheritance.

Here, you can assume that Shape defines some number of members that are common to all descendants
(maybe a value to represent the color to draw the shape and other values to represent the height and width).
Given that the Hexagon class extends Shape, it inherits the core functionality defined by Shape and Object, as
well as defines additional hexagon-related details of its own (whatever those may be).

Note Under the .NET platform, System.Object is always the topmost parent in any class hierarchy, which
defines some general functionality for all types (fully described in Chapter 6).

There is another form of code reuse in the world of OOP: the containment/delegation model also
known as the “has-a” relationship or aggregation. This form of reuse is not used to establish parent-child
relationships. Rather, the “has-a” relationship allows one class to define a member variable of another class
and expose its functionality (if required) to the object user indirectly.

For example, assume you are again modeling an automobile. You might want to express the idea that
a car “has-a” radio. It would be illogical to attempt to derive the Car class from a Radio, or vice versa
(a Car “is-a” Radio? I think not!). Rather, you have two independent classes working together, where the Car
class creates and exposes the Radio’s functionality.

class Radio

{

public void Power(bool turnOn)

{

Console.WriteLine("Radio on: {0}", turnOn);
}
}

185

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

class Car
{
// Car 'has-a' Radio.
private Radio myRadio = new Radio();

public void TurnOnRadio(bool onOff)
{
// Delegate call to inner object.
myRadio.Power (on0ff);
}
}

Notice that the object user has no clue that the Car class is using an inner Radio object.

static void Main(string[] args)

{
// Call is forwarded to Radio internally.
Car viper = new Car();
viper.TurnOnRadio(false);

}

The Role of Polymorphism

The final pillar of OOP is polymorphism. This trait captures a language’s ability to treat related objects in
a similar manner. Specifically, this tenant of an object-oriented language allows a base class to define a
set of members (formally termed the polymorphic interface) that are available to all descendants. A class’s
polymorphic interface is constructed using any number of virtual or abstract members (see Chapter 6 for
full details).

In a nutshell, a virtual member is a member in a base class that defines a default implementation that
may be changed (or more formally speaking, overridden) by a derived class. In contrast, an abstract method
is amember in a base class that does not provide a default implementation but does provide a signature.
When a class derives from a base class defining an abstract method, it must be overridden by a derived
type. In either case, when derived types override the members defined by a base class, they are essentially
redefining how they respond to the same request.

To preview polymorphism, let’s provide some details behind the shapes hierarchy shown in Figure 5-5.
Assume that the Shape class has defined a virtual method named Draw() that takes no parameters. Given
that every shape needs to render itself in a unique manner, subclasses such as Hexagon and Circle are free
to override this method to their own liking (see Figure 5-5).

186

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

Circle
Class

———— = Shape

Object ¥
Class
2
Shape A
Class
= Methods

@ Draw

Figure 5-5. Classical polymorphism

£

Hexagon
Class
-+ Shape

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

Calling Draw() on a Circle
renders a 2D circle.

Calling Draw() on a
Hexagon renders a 2D
hexagon.

After a polymorphic interface has been designed, you can begin to make various assumptions in
your code. For example, given that Hexagon and Circle derive from a common parent (Shape), an array of
Shape types could contain anything deriving from this base class. Furthermore, given that Shape defines
a polymorphic interface to all derived types (the Draw() method in this example), you can assume each
member in the array has this functionality.

Consider the following Main() method, which instructs an array of Shape-derived types to render

themselves using the Draw() method:

class Program

{

static void Main(string[] args)

{

Shape[] myShapes = new Shape[3];

myShapes[0]
myShapes[1]
myShapes[2]

new Hexagon();
new Circle();
new Hexagon();

foreach (Shape s in myShapes)

{

// Use the polymorphic interface!

s.Draw();

}

Console.ReadlLine();

This wraps up our brisk overview of the pillars of OOP. Now that you have the theory in your mind, the
remainder of this chapter explores further details of how encapsulation is handled under C#. Chapter 6 will

tackle the details of inheritance and polymorphism.

187

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

C# Access Modifiers

When working with encapsulation, you must always take into account which aspects of a type are visible
to various parts of your application. Specifically, types (classes, interfaces, structures, enumerations, and
delegates) as well as their members (properties, methods, constructors, and fields) are defined using a
specific keyword to control how “visible” the item is to other parts of your application. Although C# defines
numerous keywords to control access, they differ on where they can be successfully applied (type or
member). Table 5-1 documents the role of each access modifier and where it may be applied.

Table 5-1. C# Access Modifiers

C# Access Modifier May Be Applied To Meaning in Life

public Types or type members Public items have no access restrictions. A public
member can be accessed from an object, as well
as any derived class. A public type can be accessed
from other external assemblies.

private Type members or nested Private items can be accessed only by the class
types (or structure) that defines the item.

protected Type members or nested Protected items can be used by the class that
types defines it and any child class. However, protected

items cannot be accessed from the outside world
using the C# dot operator.

internal Types or type members Internal items are accessible only within the
current assembly. Therefore, if you define a set of
internal types within a .NET class library, other
assemblies are not able to use them.

protected internal Type members or nested ~ When the protected and internal keywords are
types combined on an item, the item is accessible within
the defining assembly, within the defining class,
and by derived classes.

In this chapter, you are concerned only with the public and private keywords. Later chapters will
examine the role of the internal and protected internal modifiers (useful when you build .NET code
libraries) and the protected modifier (useful when you are creating class hierarchies).

The Default Access Modifiers

By default, type members are implicitly private while types are implicitly internal. Thus, the following
class definition is automatically set to internal, while the type’s default constructor is automatically set to
private (however, as you would suspect, there are few times you would want a private class constructor):

// An internal class with a private default constructor.
class Radio

{
Radio(){}
}

188

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

If you want to be explicit, you could add these keywords yourself with no ill effect (beyond a few
additional keystrokes).

// An internal class with a private default constructor.
internal class Radio

private Radio(){}

To allow other parts of a program to invoke members of an object, you must define them with the
public keyword (or possibly with the protected keyword, which you will learn about in the next chapter).
As well, if you want to expose the Radio to external assemblies (again, useful when building .NET code
libraries; see Chapter 14), you will need to add the public modifier.

// A public class with a public default constructor.
public class Radio

public Radio(){}

Access Modifiers and Nested Types

As mentioned in Table 5-1, the private, protected, and protected internal access modifiers can be
applied to a nested type. Chapter 6 will examine nesting in detail. What you need to know at this point,
however, is that a nested type is a type declared directly within the scope of class or structure. By way of
example, here is a private enumeration (named CarColor) nested within a public class (named SportsCar):

public class SportsCar
{
// OK! Nested types can be marked private.
private enum CarColor
{
Red, Green, Blue
}
}

Here, it is permissible to apply the private access modifier on the nested type. However, non-nested
types (such as the SportsCar) can be defined only with the public or internal modifiers. Therefore, the
following class definition is illegal:

// Error! Nonnested types cannot be marked private!
private class SportsCar

{}

189

http://dx.doi.org/10.1007/978-1-4842-3018-3_14
http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

The First Pillar: G#’s Encapsulation Services

The concept of encapsulation revolves around the notion that an object’s data should not be directly
accessible from an object instance. Rather, class data is defined as private. If the object user wants to alter
the state of an object, it does so indirectly using public members. To illustrate the need for encapsulation
services, assume you have created the following class definition:

// A class with a single public field.
class Book
{

public int numberOfPages;

}

The problem with public data is that the data itself has no ability to “understand” whether the current
value to which it is assigned is valid with regard to the current business rules of the system. As you know,
the upper range of a C# int is quite large (2,147,483,647). Therefore, the compiler allows the following
assignment:

// Humm. That is one heck of a mini-novel!
static void Main(string[] args)
{
Book miniNovel = new Book();
miniNovel.numberOfPages = 30_000_000;

}

Although you have not overflowed the boundaries of an int data type, it should be clear that a mini
novel with a page count of 30,000,000 pages is a bit unreasonable. As you can see, public fields do not
provide a way to trap logical upper (or lower) limits. If your current system has a business rule that states a
book must be between 1 and 1,000 pages, you are at a loss to enforce this programmatically. Because of this,
public fields typically have no place in a production-level class definition.

Note To be more specific, members of a class that represent an object’s state should not be marked as
public. As you will see later in this chapter, public constants and public read-only fields are quite useful.

Encapsulation provides a way to preserve the integrity of an object’s state data. Rather than defining
public fields (which can easily foster data corruption), you should get in the habit of defining private data,
which is indirectly manipulated using one of two main techniques.

e You can define a pair of public accessor (get) and mutator (set) methods.
e You can define a public .NET property.

Whichever technique you choose, the point is that a well-encapsulated class should protect its data
and hide the details of how it operates from the prying eyes of the outside world. This is often termed black-
box programming. The beauty of this approach is that an object is free to change how a given method is
implemented under the hood. It does this without breaking any existing code making use of it, provided that
the parameters and return values of the method remain constant.

190

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Encapsulation Using Traditional Accessors and Mutators

Over the remaining pages in this chapter, you will be building a fairly complete class that models a general
employee. To get the ball rolling, create a new Console Application project named EmployeeApp and insert a
new class file (named Employee. cs) using the Project Add class menu item. Update the Employee class with
the following fields, methods, and constructors:

class Employee

// Field data.

private string empName;
private int empID;
private float currPay;

/1 Constructors.
public Employee() {}
public Employee(string name, int id, float pay)
{
empName = name;
empID = id;
currPay = pay;

// Methods.
public void GiveBonus(float amount)

{

currPay += amount;

}

public void DisplayStats()
{
Console.WriteLine("Name: {0}", empName);
Console.WritelLine("ID: {0}", empID);
Console.WritelLine("Pay: {0}", currPay);
}
}

Notice that the fields of the Employee class are currently defined using the private keyword. Given this,
the empName, empID, and currPay fields are not directly accessible from an object variable. Therefore, the
following logic in Main() would result in compiler errors:

static void Main(string[] args)

{

Employee emp = new Employee();
// Error! Cannot directly access private members

// from an object!
emp.empName = "Marv";

191

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

If you want the outside world to interact with a worker’s full name, a traditional approach (which is
common in Java) is to define an accessor (get method) and a mutator (set method). The role of a get
method is to return to the caller the current value of the underlying state data. A set method allows the caller
to change the current value of the underlying state data, as long as the defined business rules are met.

To illustrate, let’s encapsulate the empName field. To do so, add the following public methods to the
Employee class. Notice that the SetName () method performs a test on the incoming data to ensure the string
is 15 characters or less. If it is not, an error prints to the console and returns without making a change to the
empName field.

Note If this were a production-level class, you would also make to check the character length for an
employee’s name within your constructor logic. Ignore this detail for the time being, as you will clean up this
code in just a bit when you examine .NET property syntax.

class Employee

// Field data.
private string empName;

/! Accessor (get method).
public string GetName()

{
return empName;

}

// Mutator (set method).
public void SetName(string name)
{
// Do a check on incoming value
// before making assignment.
if (name.Length > 15)
Console.WriteLine("Exror! Name length exceeds 15 characters!");
else
empName = name;

This technique requires two uniquely named methods to operate on a single data point. To test your
new methods, update your Main() method as follows:

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Encapsulation **¥**\n");
Employee emp = new Employee("Marvin", 456, 30 000);
emp.GiveBonus(1000);
emp.DisplayStats();

192

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

// Use the get/set methods to interact with the object's name.
emp.SetName("Marv");

Console.WriteLine("Employee is named: {0}", emp.GetName());
Console.ReadlLine();

Because of the code in your SetName () method, if you attempted to specify more than 15 characters (see
the following), you would find the hard-coded error message printed to the console:

static void Main(string[] args)

{

Console.WritelLine("***** Fun with Encapsulation **¥¥¥\n");

// Longer than 15 characters! Error will print to console.
Employee emp2 = new Employee();
emp2.SetName("Xena the warrior princess");

Console.ReadlLine();

So far, so good. You have encapsulated the private empName field using two public methods named
GetName() and SetName(). If you were to further encapsulate the data in the Employee class, you would need
to add various additional methods (such as GetID(), SetID(), GetCurrentPay(), SetCurrentPay()). Each of
the mutator methods could have within it various lines of code to check for additional business rules. While
this could certainly be done, the C# language has a useful alternative notation to encapsulate class data.

Encapsulation Using .NET Properties

Although you can encapsulate a piece of field data using traditional get and set methods, .NET languages
prefer to enforce data encapsulation state data using properties. First, understand that properties are just a
simplification for “real” accessor and mutator methods. Therefore, as a class designer, you are still able to
perform any internal logic necessary before making the value assignment (e.g., uppercase the value, scrub
the value for illegal characters, check the bounds of a numerical value, and so on).

Here is the updated Employee class, now enforcing encapsulation of each field using property syntax
rather than traditional get and set methods:

class Employee

// Field data.

private string empName;
private int empID;
private float currPay;

// Properties!
public string Name

{

get { return empName; }
set

193

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

{
if (value.Length > 15)

Console.WriteLine("Error! Name length exceeds 15 characters!");
else
empName = value;

// We could add additional business rules to the sets of these properties;
// however, there is no need to do so for this example.
public int ID
{
get { return empID; }
set { empID = value; }

public float Pay

{
get { return currPay; }
set { currPay = value; }

}

A C# property is composed by defining a get scope (accessor) and set scope (mutator) directly within
the property itself. Notice that the property specifies the type of data it is encapsulating by what appears to
be a return value. Also take note that, unlike a method, properties do not make use of parentheses (not even
empty parentheses) when being defined. Consider the following commentary on your current ID property:

// The 'int' represents the type of data this property encapsulates.
public int ID // Note lack of parentheses.
{

get { return empID; }

set { empID = value; }

}

Within a set scope of a property, you use a token named value, which is used to represent the incoming
value used to assign the property by the caller. This token is not a true C# keyword but is what is known as
a contextual keyword. When the token value is within the set scope of the property, it always represents the
value being assigned by the caller, and it will always be the same underlying data type as the property itself.
Thus, notice how the Name property can still test the range of the string as so:

public string Name

{
get { return empName; }
set
{
// Here, value is really a string.
if (value.Length > 15)
Console.WriteLine("Error! Name length exceeds 15 characters!");
else
empName = value;
}
}

194

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

After you have these properties in place, it appears to the caller that it is getting and setting a public
point of data; however, the correct get and set block is called behind the scenes to preserve encapsulation.

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Encapsulation *¥¥**\n");
Employee emp = new Employee("Marvin", 456, 30000);
emp.GiveBonus(1000);
emp.DisplayStats();
// Reset and then get the Name property.
emp.Name = "Marv";
Console.WriteLine("Employee is named: {0}", emp.Name);
Console.ReadlLine();

}

Properties (as opposed to accessor and mutator methods) also make your types easier to manipulate,
in that properties are able to respond to the intrinsic operators of C#. To illustrate, assume that the Employee
class type has an internal private member variable representing the age of the employee. Here is the relevant
update (notice the use of constructor chaining):

class Employee

// New field and property.
private int empAge;
public int Age
{
get { return empAge; }
set { empAge = value; }

// Updated constructors.

public Employee() {}

public Employee(string name, int id, float pay)
:this(name, 0, id, pay){}

public Employee(string name, int age, int id, float pay)
{

empName = name;

empID = id;

empAge = age;

currPay = pay;

}

// Updated DisplayStats() method now accounts for age.
public void DisplayStats()
{

Console.WriteLine("Name: {0}", empName);
Console.WritelLine("ID: {0}", empID);

195

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Console.WriteLine("Age: {0}", empAge);
Console.WritelLine("Pay: {0}", currPay);
}
}

Now assume you have created an Employee object named joe. On his birthday, you want to increment
the age by one. Using traditional accessor and mutator methods, you would need to write code such as the
following:

Employee joe = new Employee();
joe.SetAge(joe.GetAge() + 1);

However, if you encapsulate empAge using a property named Age, you are able to simply write this:

Employee joe = new Employee();
joe.Age++;

Properties as Expression-Bodied Members (New)

As mentioned previously, property get and set accessors can also be written as expression-bodied
members. The rules and syntax are the same: single-line methods can be written using the new syntax. So,
the Age property could be written like this:

public int Age
{
get => empAge;
set => empAge = value;

}

Both syntaxes compile down to the same IL, so which syntax you use is completely up to you. In this
text, you will see a mix of both styles to keep visibility on them, not because I am adhering to a specific
code style.

Using Properties Within a Class Definition

Properties, specifically the set portion of a property, are common places to package up the business rules
of your class. Currently, the Employee class has a Name property that ensures the name is no more than 15
characters. The remaining properties (ID, Pay, and Age) could also be updated with any relevant logic.

While this is well and good, also consider what a class constructor typically does internally. It will take
the incoming parameters, check for valid data, and then make assignments to the internal private fields.
Currently, your master constructor does not test the incoming string data for a valid range, so you could
update this member as so:

public Employee(string name, int age, int id, float pay)
// Humm, this seems like a problem...

if (name.Length > 15)
Console.WriteLine("Error! Name length exceeds 15 characters!");

196

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

else
empName = name;

empID = id;
empAge = age;
currPay = pay;

I am sure you can see the problem with this approach. The Name property and your master constructor
are performing the same error checking. If you were also making checks on the other data points, you would
have a good deal of duplicate code. To streamline your code and isolate all of your error checking to a central
location, you will do well if you always use properties within your class whenever you need to get or set the
values. Consider the following updated constructor:

public Employee(string name, int age, int id, float pay)
// Better! Use properties when setting class data.

// This reduces the amount of duplicate error checks.
Name = name;

Age = age;
ID = id;
Pay = pay;

Beyond updating constructors to use properties when assigning values, it is good practice to use
properties throughout a class implementation to ensure your business rules are always enforced. In many
cases, the only time when you directly make reference to the underlying private piece of data is within the
property itself. With this in mind, here is your updated Employee class:

class Employee

{
// Field data.
private string empName;
private int empID;
private float currPay;
private int empAge;

// Constructors.

public Employee() { }

public Employee(string name, int id, float pay)
:this(name, 0, id, pay){}

public Employee(string name, int age, int id, float pay)

{
Name = name;
Age = age;
ID = id;
Pay = pay;

}

197

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

// Methods.
public void GiveBonus(float amount)
{ Pay += amount; }

public void DisplayStats()
{

Console.WriteLine("Name: {0}", Name);

Console.WriteLine("ID: {0}", ID);

Console.WriteLine("Age: {0}", Age);

Console.WriteLine("Pay: {0}", Pay);
}

/1 Properties as before...

Read-Only and Write-Only Properties

When encapsulating data, you might want to configure a read-only property. To do so, simply omit the set
block. Likewise, if you want to have a write-only property, omit the get block. For example, assume you have
anew property named SocialSecurityNumber, which encapsulates a private string variable named empSSN.
If you want to make this a read-only property, you could write this:

public string SocialSecurityNumber

{
get { return empSSN; }

}

Now assume your class constructor has a new parameter to let the caller set the SSN of the object. Since
the SocialSecurityNumber property is read-only, you cannot set the value as so:

public Employee(string name, int age, int id, float pay, string ssn)

Name = name;

Age = age;
ID = id;
Pay = pay;

// 00PS! This is no longer possible if the property is read only.
SocialSecurityNumber = ssn;

Unless you are willing to redesign the property as read-write, your only choice would be to use the
underlying empSSN member variable within your constructor logic as so:

public Employee(string name, int age, int id, float pay, string ssn)
{
// Check incoming ssn parameter as required and then set the value.
empSSN = ssn;

}

198

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

Source Code You can find the EmployeeApp project in the Chapter 5 subdirectory.

Revisiting the static Keyword: Defining Static Properties

Earlier in this chapter, you examined the role of the static keyword. Now that you understand the use of C#
property syntax, you can formalize static properties. In the StaticDataAndMembers project created earlier
in this chapter, your SavingsAccount class had two public static methods to get and set the interest rate.
However, it would be more standard to wrap this data point in a static property. Here’s an example (note the
use of the static keyword):

// A simple savings account class.
class SavingsAccount
{

// Instance-level data.

public double currBalance;

// A static point of data.
private static double currInterestRate = 0.04;

// A static property.

public static double InterestRate

{
get { return currInterestRate; }
set { currInterestRate = value; }

}

If you want to use this property in place of the previous static methods, you could update your Main()
method as so:

// Print the current interest rate via property.
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.InterestRate);

Understanding Automatic Properties

When you are building properties to encapsulate your data, it is common to find that the set scopes

have code to enforce business rules of your program. However, in some cases you may not need any
implementation logic beyond simply getting and setting the value. This means you can end up with a lot of
code looking like the following:

// A Car type using standard property
// syntax.
class Car

{

private string carName = "";
public string PetName

199

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

{

get { return carName; }
set { carName = value; }
}
}

In these cases, it can become rather verbose to define private backing fields and simple property
definitions multiple times. By way of an example, if you are modeling a class that requires nine private
points of field data, you end up authoring nine related properties that are little more than thin wrappers for
encapsulation services.

To streamline the process of providing simple encapsulation of field data, you may use automatic
property syntax. As the name implies, this feature will offload the work of defining a private backing field and
the related C# property member to the compiler using a new bit of syntax. To illustrate, create a new Console
Application project named AutoProps. Now, consider the reworking of the Car class, which uses this syntax
to quickly create three properties:

class Car
{
// Automatic properties!No need to define backing fields.
public string PetName { get; set; }
public int Speed { get; set; }
public string Color { get; set; }
}

Note Visual Studio provides the prop code snippet. If you type prop inside a class definition and press the
Tab key twice, the IDE will generate starter code for a new automatic property. You can then use the Tab key to
cycle through each part of the definition to fill in the details. Give it a try!

When defining automatic properties, you simply specify the access modifier, underlying data
type, property name, and empty get/set scopes. At compile time, your type will be provided with an
autogenerated private backing field and a fitting implementation of the get/set logic.

Note The name of the autogenerated private backing field is not visible within your C# codebase. The only
way to see it is to make use of a tool such as ildasm.exe.

Since C# version 6, it is possible to define a “read-only automatic property” by omitting the set scope.
However, it is not possible to define a write-only property. To solidify, consider the following:

// Read-only property? This is OK!
public int MyReadOnlyProp { get; }

// Write only property? Error!
public int MyWriteOnlyProp { set; }

200

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Interacting with Automatic Properties

Because the compiler will define the private backing field at compile time (and given that these fields are

not directly accessible in C# code), the class-defining automatic properties will always need to use property
syntax to get and set the underlying value. This is important to note because many programmers make direct
use of the private fields within a class definition, which is not possible in this case. For example, if the Car
class were to provide a DisplayStats() method, it would need to implement this method using the property
name.

class Car

{
// Automatic properties!
public string PetName { get; set; }
public int Speed { get; set; }
public string Color { get; set; }

public void DisplayStats()
{
Console.WritelLine("Car Name: {0}", PetName);
Console.WriteLine("Speed: {0}", Speed);
Console.WritelLine("Color: {0}", Color);
}
}

When you are using an object defined with automatic properties, you will be able to assign and obtain
the values using the expected property syntax.

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Automatic Properties *¥*¥¥\n");

Car ¢ = new Car();
c.PetName = "Frank";
c.Speed = 55;
c.Color = "Red";

Console.Writeline("Your car is named {0}? That's odd...",
c.PetName);
c.DisplayStats();

Console.ReadlLine();

Automatic Properties and Default Values

When you use automatic properties to encapsulate numerical or Boolean data, you are able to use the
autogenerated type properties straightaway within your codebase, as the hidden backing fields will be
assigned a safe default value (false for Booleans and 0 for numerical data). However, be aware that if you use
automatic property syntax to wrap another class variable, the hidden private reference type will also be set to
a default value of null (which can prove problematic if you are not careful).

201

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Let’s insert into your current project a new class named Garage, which makes use of two automatic
properties (of course, a real garage class might maintain a collection of Car objects; however, ignore that
detail here).

class Garage

{
// The hidden int backing field is set to zero!
public int NumberOfCars { get; set; }
// The hidden Car backing field is set to null!
public Car MyAuto { get; set; }

}

Given C#'s default values for field data, you would be able to print out the value of NumberOfCars as is
(as it is automatically assigned the value of zero), but if you directly invoke MyAuto, you will receive a “null
reference exception” at runtime, as the Car member variable used in the background has not been assigned
to a new object.

static void Main(string[] args)

{
Garage g = new Garage();

// OK, prints default value of zero.
Console.WriteLine("Number of Cars: {0}", g.NumberOfCars);

// Runtime error! Backing field is currently null!
Console.WritelLine(g.MyAuto.PetName);
Console.ReadlLine();

To solve this problem, you could update the class constructors to ensure the object comes to life in a
safe manner. Here’s an example:

class Garage

{
// The hidden backing field is set to zero!

public int NumberOfCars { get; set; }

// The hidden backing field is set to null!
public Car MyAuto { get; set; }

// Must use constructors to override default
// values assigned to hidden backing fields.
public Garage()
{

MyAuto = new Car();

NumberOfCars = 1;

}

202

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

public Garage(Car car, int number)
{
MyAuto = car;
NumberOfCars = number;
}
}

With this modification, you could now place a Car object into the Garage object as so:

static void Main(string[] args)

{

Console.WritelLine("***** Fun with Automatic Properties ***¥**¥\n");

// Make a car.

Car c = new Car();
c.PetName = "Frank";
c.Speed = 55;
c.Color = "Red";
c.DisplayStats();

// Put car in the garage.

Garage g = new Garage();

g.MyAuto = c;

Console.WriteLine("Number of Cars in garage: {0}", g.NumberOfCars);
Console.WriteLine("Your car is named: {0}", g.MyAuto.PetName);

Console.ReadlLine();

Initialization of Automatic Properties

While the previous approach works just fine, since the release of C# 6, you are provided with a language
feature that can simplify how an automatic property receives its initial value assignment. Recall from the
onset of this chapter, a data field of a class can be directly assigned an initial value upon declaration. Here’s
an example:

class Car

{

private int numberOfDoors = 2;

}

In a similar manner, C# now allows you to assign an initial value to the underlying backing field
generated by the compiler. This alleviates you from the hassle of adding additional code statements in class
constructors to ensure property data comes to life as intended.

Here is an updated version of the Garage class that is initializing automatic properties to fitting values.
Note you no longer need to add additional logic to your default class constructor to make safe assignments.
In this iteration, you are directly assigning a new Car object to the MyAuto property.

203

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

class Garage

{
// The hidden backing field is set to 1.
public int NumberOfCars { get; set; } = 1;
// The hidden backing field is set to a new Car object.
public Car MyAuto { get; set; } = new Car();
public Garage(){}
public Garage(Car car, int number)
{
MyAuto = car;
NumberOfCars = number;
}
}

As you may agree, automatic properties are a nice feature of the C# programming language, as you
can define a number of properties for a class using a streamlined syntax. Be aware of course that if you are
building a property that requires additional code beyond getting and setting the underlying private field
(such as data validation logic, writing to an event log, communicating with a database, etc.), you will be
required to define a “normal” .NET property type by hand. C# automatic properties never do more than
provide simple encapsulation for an underlying piece of (compiler-generated) private data.

Source Code You can find the AutoProps project in the Chapter 5 subdirectory.

Understanding Object Initialization Syntax

As shown throughout this chapter, a constructor allows you to specify startup values when creating a new
object. On a related note, properties allow you to get and set underlying data in a safe manner. When you
are working with other people’s classes, including the classes found within the .NET base class library, it
is not too uncommon to discover that there is not a single constructor that allows you to set every piece
of underlying state data. Given this point, a programmer is typically forced to pick the best constructor
possible, after which the programmer makes assignments using a handful of provided properties.

To help streamline the process of getting an object up and running, C# offers object initializer syntax.
Using this technique, it is possible to create a new object variable and assign a slew of properties and/or
public fields in a few lines of code. Syntactically, an object initializer consists of a comma-delimited list of
specified values, enclosed by the { and } tokens. Each member in the initialization list maps to the name of a
public field or public property of the object being initialized.

To see this syntax in action, create a new Console Application project named ObjectInitializers. Now,
consider a simple class named Point, created using automatic properties (which is not mandatory for object
initialization syntax but helps you write some concise code).

class Point

{
public int X { get; set; }
public int Y { get; set; }

204

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

public Point(int xVal, int yval)
{
X
Y

xVal;
yVal;

}
public Point() { }

public void DisplayStats()
{
Console.WriteLine("[{0}, {1}]", X, Y);
}
}

Now consider how you can make Point objects using any of the following approaches:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Object Init Syntax **¥¥*\n");

// Make a Point by setting each property manually.
Point firstPoint = new Point();

firstPoint.X = 10;

firstPoint.Y = 10;

firstPoint.DisplayStats();

// Or make a Point via a custom constructor.
Point anotherPoint = new Point(20, 20);
anotherPoint.DisplayStats();

// Or make a Point using object init syntax.
Point finalPoint = new Point { X = 30, Y = 30 };
finalPoint.DisplayStats();

Console.ReadlLine();

The final Point variable is not making use of a custom constructor (as one might do traditionally) but
is rather setting values to the public X and Y properties. Behind the scenes, the type’s default constructor is
invoked, followed by setting the values to the specified properties. To this end, object initialization syntax is
just shorthand notation for the syntax used to create a class variable using a default constructor and to set
the state data property by property.

Calling Custom Constructors with Initialization Syntax

The previous examples initialized Point types by implicitly calling the default constructor on the type.

// Here, the default constructor is called implicitly.
Point finalPoint = new Point { X = 30, Y = 30 };

205

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

If you want to be clear about this, it is permissible to explicitly call the default constructor as follows:

// Here, the default constructor is called explicitly.
Point finalPoint = new Point() { X = 30, Y = 30 };

Do be aware that when you are constructing a type using initialization syntax, you are able to invoke
any constructor defined by the class. Your Point type currently defines a two-argument constructor to set
the (x, y) position. Therefore, the following Point declaration results in an X value of 100 and a Y value of 100,
regardless of the fact that the constructor arguments specified the values 10 and 16:

// Calling a custom constructor.
Point pt = new Point(10, 16) { X = 100, Y = 100 };

Given the current definition of your Point type, calling the custom constructor while using initialization
syntax is not terribly useful (and more than a bit verbose). However, if your Point type provides a
new constructor that allows the caller to establish a color (via a custom enum named PointColor), the
combination of custom constructors and object initialization syntax becomes clear. Assume you have
updated Point as follows:

enum PointColor
{ LightBlue, BloodRed, Gold }

class Point

{
public int X { get; set; }
public int Y { get; set; }
public PointColor Color{ get; set; }

public Point(int xVal, int yval)
{

X = xVal;

Y = yvVal;

Color = PointColor.Gold;
}

public Point(PointColor ptColor)

{
Color = ptColor;

}

public Point()
: this(PointColor.BloodRed){ }

public void DisplayStats()

{
Console.WriteLine("[{0}, {1}]1", X, Y);
Console.WritelLine("Point is {0}", Color);

}
}

206

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

With this new constructor, you can now create a gold point (positioned at 90, 20) as follows:

// Calling a more interesting custom constructor with init syntax.
Point goldPoint = new Point(PointColor.Gold){ X = 90, Y = 20 };
goldPoint.DisplayStats();

Initializing Data with Initialization Syntax

As briefly mentioned earlier in this chapter (and fully examined in Chapter 6), the “has-a” relationship
allows you to compose new classes by defining member variables of existing classes. For example, assume
you now have a Rectangle class, which makes use of the Point type to represent its upper-left/bottom-right
coordinates. Since automatic properties set all fields of class variables to null, you will implement this new
class using “traditional” property syntax.

class Rectangle

{
private Point topLeft = new Point();
private Point bottomRight = new Point();

public Point ToplLeft
{
get { return toplLeft; }
set { topLeft = value; }
}
public Point BottomRight
{
get { return bottomRight; }
set { bottomRight = value; }

}

public void DisplayStats()
{
Console.WriteLine("[TopLeft: {0}, {1}, {2} BottomRight: {3}, {4}, {5}1",
topLeft.X, topLeft.Y, topLeft.Color,
bottomRight.X, bottomRight.Y, bottomRight.Color);

Using object initialization syntax, you could create a new Rectangle variable and set the inner Points as
follows:

// Create and initialize a Rectangle.
Rectangle myRect = new Rectangle
{
TopLeft = new Point { X = 10, Y = 10 },
BottomRight = new Point { X = 2 =

};

207

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Again, the benefit of object initialization syntax is that it basically decreases the number of keystrokes
(assuming there is not a suitable constructor). Here is the traditional approach to establishing a similar
Rectangle:

// 01d-school approach.
Rectangle r = new Rectangle();
Point p1 = new Point();

p1.X = 10;

p1.Y = 10;

r.TopLeft = pi1;

Point p2 = new Point();

p2.X = 200;

p2.Y = 200;

r.BottomRight = p2;

While you might feel object initialization syntax can take a bit of getting used to, once you get
comfortable with the code, you'll be quite pleased at how quickly you can establish the state of a new object
with minimal fuss and bother.

Source Code You can find the Objectinitilizers project in the Chapter 5 subdirectory.

Working with Constant Field Data

C# offers the const keyword to define constant data, which can never change after the initial assignment. As
you might guess, this can be helpful when you are defining a set of known values for use in your applications
that are logically connected to a given class or structure.

Assume you are building a utility class named MyMathClass that needs to define a value for pi (which
you will assume to be 3.14 for simplicity). Begin by creating a new Console Application project named
ConstData. Given that you would not want to allow other developers to change this value in code, pi could
be modeled with the following constant:

namespace ConstData

{ class MyMathClass
{ public const double PI = 3.14;
}
class Program
{ ?tatic void Main(string[] args)

Console.WriteLine("***** Fun with Const **¥¥¥\n");
Console.WriteLine("The value of PI is: {0}", MyMathClass.PI);
// Error! Can't change a constant!

// MyMathClass.PI = 3.1444;

208

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Console.ReadLine();
}
}
}

Notice that you are referencing the constant data defined by MyMathClass using a class name prefix
(i.e., MyMathClass.PI). This is because constant fields of a class are implicitly szatic. However, it is
permissible to define and access a local constant variable within the scope of a method or property.
Here’s an example:

static void LocalConstStringVariable()

{
// A local constant data point can be directly accessed.
const string fixedStr = "Fixed string Data";
Console.Writeline(fixedStr);

// Error!
// fixedStr = "This will not work!";

Regardless of where you define a constant piece of data, the one point to always remember is that the
initial value assigned to the constant must be specified at the time you define the constant. Thus, if you were
to modify your MyMathClass in such a way that the value of pi is assigned in a class constructor as follows:

class MyMathClass

{
// Try to set PI in ctor?
public const double PI;

public MyMathClass()
{
// Not possible- must assign at time of declaration.
PI = 3.14;
}
}

you would receive a compile-time error. The reason for this restriction has to do with the fact the value
of constant data must be known at compile time. Constructors (or any other method), as you know, are
invoked at runtime.

Understanding Read-Only Fields

Closely related to constant data is the notion of read-only field data (which should not be confused with
aread-only property). Like a constant, a read-only field cannot be changed after the initial assignment.
However, unlike a constant, the value assigned to a read-only field can be determined at runtime and,
therefore, can legally be assigned within the scope of a constructor but nowhere else.

209

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

This can be helpful when you don’t know the value of a field until runtime, perhaps because you need
to read an external file to obtain the value but want to ensure that the value will not change after that point.
For the sake of illustration, assume the following update to MyMathClass:

class MyMathClass

{
// Read-only fields can be assigned in ctors,
// but nowhere else.
public readonly double PI;

public MyMathClass ()
{
PI = 3.14;
}
}

Again, any attempt to make assignments to a field marked readonly outside the scope of a constructor
results in a compiler error.

class MyMathClass

{
public readonly double PI;

public MyMathClass ()
{

PI = 3.14;
}

// Error!
public void ChangePI()
{ PI = 3.14444;}

}

Static Read-Only Fields

Unlike a constant field, read-only fields are not implicitly static. Thus, if you want to expose PI from the class
level, you must explicitly use the static keyword. If you know the value of a static read-only field at compile
time, the initial assignment looks similar to that of a constant (however, in this case, it would be easier to

simply use the const keyword in the first place, as you are assigning the data field at the time of declaration).

class MyMathClass

{
public static readonly double PI = 3.14;
}
class Program
{
static void Main(string[] args)
{
Console.WritelLine("***** Fyn with Const *ekk**");
Console.WriteLine("The value of PI is: {0}", MyMathClass.PI);
Console.ReadlLine();
}
}

210

CHAPTER 5 * UNDERSTANDING ENCAPSULATION

However, if the value of a static read-only field is not known until runtime, you must use a static
constructor as described earlier in this chapter.

class MyMathClass

{
public static readonly double PI;

static MyMathClass()
{PI =3.14; }
}

Source Code You can find the ConstData project in the Chapter 5 subdirectory.

Understanding Partial Classes

Last but not least, it is important to understand the role of the C# partial keyword. A production-level
class could easily consist of hundreds and hundreds (if not thousands) of lines of code within a single *.cs
file. As it turns out, when you are creating your classes, it is often the case that much of the boilerplate code
can be basically ignored after it is accounted for. For example, field data, properties, and constructors tend
to remain as is during production, while methods tend to be modified quite often to account for updated
algorithms and so forth.

In C#, you can partition a single class across multiple code files to isolate the boilerplate code from
more readily useful (and complex) members. To illustrate where partial classes could be useful, open the
EmployeeApp project you created previously in this chapter in Visual Studio, and then open the Employee.
cs file for editing. As you recall, this single file contains code of all aspects of the class.

class Employee

// Field Data

// Constructors

// Methods

// Properties

Using partial classes, you could choose to move (for example) the properties, constructors, and field

data into a new file named Employee.Core.cs (the name of the file is irrelevant). The first step is to add the
partial keyword to the current class definition and cut the code to be placed into the new file.

// Employee.cs
partial class Employee

{
// Methods

// Properties

}

211

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 5 © UNDERSTANDING ENCAPSULATION

Next, assuming you have inserted a new class file into your project, you can move the data fields and
constructors to the new file using a simple cut-and-paste operation. In addition, you must add the partial
keyword to this aspect of the class definition. Here’s an example:

// Employee.Core.cs
partial class Employee

{
// Field data

// Constructors

Note Remember that every aspect of a partial class definition must be marked with the partial keyword!

After you compile the modified project, you should see no difference whatsoever. The whole idea of
a partial class is realized only during design time. After the application has been compiled, there is just a
single, unified class within the assembly. The only requirement when defining partial types is that the type’s
name (Employee in this case) is identical and defined within the same .NET namespace.

Use Cases for Partial Classes?

Now that you understand the mechanics of how to define a partial class, you may be wondering exactly
when (and if) you will ever need to do so. To be honest, you may not need to make use of partial class
definitions too often. However, Visual Studio uses them in the background all the time. For example, if you
are building a graphical user interface using Windows Presentation Foundation (WPF), you will note that
Visual Studio places all the designer-generated code into a dedicated partial class file, leaving you to focus
on your custom programming logic (without the designer-generated code getting in the way).

Source Code You can find the EmployeeAppPartial project in the Chapter 5 subdirectory.

Summary

The point of this chapter was to introduce you to the role of the C# class type. As you have seen, classes can
take any number of constructors that enable the object user to establish the state of the object upon creation.
This chapter also illustrated several class design techniques (and related keywords). Recall that the this
keyword can be used to obtain access to the current object, the static keyword allows you to define fields
and members that are bound at the class (not object) level, and the const keyword (and readonly modifier)
allows you to define a point of data that can never change after the initial assignment.

The bulk of this chapter dug into the details of the first pillar of OOP: encapsulation. You learned about
the access modifiers of C# and the role of type properties, object initialization syntax, and partial classes.
With this behind you, you are now able to turn to the next chapter where you will learn to build a family of
related classes using inheritance and polymorphism.

212

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 6

Understanding Inheritance and
Polymorphism

Chapter 5 examined the first pillar of OOP: encapsulation. At that time, you learned how to build a single
well-defined class type with constructors and various members (fields, properties, methods, constants,
and read-only fields). This chapter will focus on the remaining two pillars of OOP: inheritance and
polymorphism.

First, you will learn how to build families of related classes using inheritance. As you will see, this
form of code reuse allows you to define common functionality in a parent class that can be leveraged, and
possibly altered, by child classes. Along the way, you will learn how to establish a polymorphic interface into
class hierarchies using virtual and abstract members, as well as the role of explicit casting.

The chapter will wrap up by examining the role of the ultimate parent class in the .NET base class
libraries: System.Object.

The Basic Mechanics of Inheritance

Recall from Chapter 5 that inheritance is an aspect of OOP that facilitates code reuse. Specifically speaking,
code reuse comes in two flavors: inheritance (the “is-a” relationship) and the containment/delegation
model (the “has-a” relationship). Let’s begin this chapter by examining the classical inheritance model of the
“is-a” relationship.

When you establish “is-a” relationships between classes, you are building a dependency between two
or more class types. The basic idea behind classical inheritance is that new classes can be created using
existing classes as a starting point. To begin with a simple example, create a new Console Application project
named BasicInheritance. Now assume you have designed a class named Car that models some basic details
of an automobile.

// A simple base class.
class Car

{

public readonly int maxSpeed;
private int currSpeed;

public Car(int max)

{
maxSpeed = max;
}
© Andrew Troelsen and Philip Japikse 2017 213

A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_6

https://doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

public Car()

{
maxSpeed = 55;
}
public int Speed
{
get { return currSpeed; }
set
{
currSpeed = value;
if (currSpeed > maxSpeed)
currSpeed = maxSpeed;
}
}
}
}

Notice that the Car class is using encapsulation services to control access to the private currSpeed field
using a public property named Speed. At this point, you can exercise your Car type as follows:

static void Main(string[] args)

{
Console.WritelLine("***** Basic Inheritance *****\n");
// Make a Car object and set max speed.
Car myCar = new Car(80);

// Set the current speed, and print it.

myCar.Speed = 50;

Console.WriteLine("My car is going {0} MPH", myCar.Speed);
Console.ReadLine();

Specifying the Parent Class of an Existing Class

Now assume you want to build a new class named MiniVan. Like a basic Car, you want to define the MiniVan
class to support data for a maximum speed, a current speed, and a property named Speed to allow the object
user to modify the object’s state. Clearly, the Car and MiniVan classes are related; in fact, it can be said that a
MiniVan “is-a” type of Car. The “is-a” relationship (formally termed classical inheritance) allows you to build
new class definitions that extend the functionality of an existing class.

The existing class that will serve as the basis for the new class is termed a base class, superclass, or parent
class. The role of a base class is to define all the common data and members for the classes that extend it.
The extending classes are formally termed derived or child classes. In C#, you make use of the colon operator
on the class definition to establish an “is-a” relationship between classes. Assume you have authored the
following new MiniVan class:

// MiniVan "is-a" Car.
class MiniVan : Car

{

}

214

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Currently, this new class has not defined any members whatsoever. So, what have you gained by
extending your MiniVan from the Car base class? Simply put, MiniVan objects now have access to each public
member defined within the parent class.

Note Although constructors are typically defined as public, a derived class never inherits the constructors
of a parent class. Constructors are used to construct only the class that they are defined within, although they
can be called by a derived class through constructor chaining. This will be covered shortly.

Given the relation between these two class types, you could now make use of the MiniVan class like so:

static void Main(string[] args)

{

Console.WriteLine("***** Basic Inheritance **¥¥*\n");

// Now make a MiniVan object.

MiniVan myVan = new MiniVan();

myVan.Speed = 10;

Console.WriteLine("My van is going {0} MPH",
myVan.Speed);

Console.ReadLine();

Again, notice that although you have not added any members to the MiniVan class, you have direct
access to the public Speed property of your parent class and have thus reused code. This is a far better
approach than creating a MiniVan class that has the same members as Car, such as a Speed property. If you
did duplicate code between these two classes, you would need to now maintain two bodies of code, which is
certainly a poor use of your time.

Always remember that inheritance preserves encapsulation; therefore, the following code results in a
compiler error, as private members can never be accessed from an object reference:

static void Main(string[] args)

{

Console.WritelLine("***** Basic Inheritance *****\n");

// Make a MiniVan object.
MiniVan myVan = new MiniVan();
myVan.Speed = 10;
Console.WriteLine("My van is going {0} MPH",
myVan.Speed);

// Exror! Can't access private members!

myVan.currSpeed = 55;
Console.ReadLine();

215

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

On a related note, if the MiniVan defined its own set of members, it would still not be able to access any
private member of the Car base class. Remember, private members can be accessed only by the class that
defines it. For example, the following method in MiniVan would result in a compiler error:

// MiniVan derives from Car.
class Minivan : Car

{
public void TestMethod()
{
// OK! Can access public members
// of a parent within a derived type.
Speed = 10;
// Error! Cannot access private
// members of parent within a derived type.
currSpeed = 10;
}
}

Regarding Multiple Base Classes

Speaking of base classes, it is important to keep in mind that C# demands that a given class have exactly one
direct base class. It is not possible to create a class type that directly derives from two or more base classes
(this technique, which is supported in unmanaged C++, is known as multiple inheritance, or simply MI).

If you attempted to create a class that specifies two direct parent classes, as shown in the following code,
you would receive compiler errors:

// Illegal! C# does not allow
// multiple inheritance for classes!
class WontWork
: BaseClassOne, BaseClassTwo
{}

As you will see in Chapter 8, the .NET platform does allow a given class, or structure, to implement any
number of discrete interfaces. In this way, a C# type can exhibit a number of behaviors while avoiding the
complexities associated with MI. On a related note, while a class can have only one direct base class, it is
permissible for an interface to directly derive from multiple interfaces. Using this technique, you can build
sophisticated interface hierarchies that model complex behaviors (again, see Chapter 8).

The sealed Keyword

C# supplies another keyword, sealed, that prevents inheritance from occurring. When you mark a class as
sealed, the compiler will not allow you to derive from this type. For example, assume you have decided that
it makes no sense to further extend the MiniVan class.

// The MiniVan class cannot be extended!
sealed class MiniVan : Car

{
}

216

http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

If you (or a teammate) were to attempt to derive from this class, you would receive a compile-time error.

// Exrror! Cannot extend
// a class marked with the sealed keyword!
class DeluxeMiniVan

: MiniVan

{}

Most often, sealing a class makes the best sense when you are designing a utility class. For example, the
System namespace defines numerous sealed classes. You can verify this for yourself by opening the Visual
Studio Object Browser (via the View menu) and selecting the String class within the System namespace of
the mscorlib.dll assembly. Notice in Figure 6-1 the icon used to denote a sealed class.

Object Browser * A X
Browse: .NET Framework 4.7 S IR MR
<Search> - P
b == Single - @ Clone() -
b *3 StackOverflowException @ Compare(string, int, string, int, int)
b %3 STAThreadAttribute @ Compare(string, int, string, int, int, bool)
4 ?_’m @ Compare(string, int, string, int, int, bool, System.Globalization Culturelnfo)
* StringComparer @ Compare(string, int, string, int, int, System.Globalization.Culturelnfo, System.C
P & StringComparison @ Compare(string, int, string, int, int, System.StringComparison) -
b & StringSplitOptions 1 e e =
b #3 SystemException
ye P public class String -

I *3 ThreadStaticAttribute
b *3 TimeoutException

b &% TimeSpan "
b #3 TimeZone

Member of System

y:
Represents text as a sequence of UTF-16 code units.To browse the NET Framework

. e Ti

b ¥3 TimeZonelnfo source code for this type, see the Reference Source.

b #3 TimeZonelnfo.AdjustmentRule

b &% TimeZonelnfo.TransitionTime + |Attributes: -

Figure 6-1. The base class libraries define numerous sealed types, such as System.String

Thus, just like the MiniVan, if you attempt to build a new class that extends System. String, you will
receive a compile-time error.

// Another error! Cannot extend
// a class marked as sealed!
class MyString

: String
{}

Note In Chapter 4, you learned that C# structures are always implicitly sealed (see Table 4-3). Therefore,
you can never derive one structure from another structure, a class from a structure, or a structure from a class.
Structures can be used to model only stand-alone, atomic, user-defined data types. If you want to leverage the
is-a relationship, you must use classes.

217

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

As you would guess, there are many more details to inheritance that you will come to know during the
remainder of this chapter. For now, simply keep in mind that the colon operator allows you to establish
base/derived class relationships, while the sealed keyword prevents subsequent inheritance from
occurring.

Revisiting Visual Studio Class Diagrams

In Chapter 2, I briefly mentioned that Visual Studio allows you to establish base/derived class relationships
visually at design time. To leverage this aspect of the IDE, your first step is to include a new class diagram
file into your current project. To do so, access the Project » Add New Item menu option and click the Class
Diagram icon (in Figure 6-2, I renamed the file from ClassDiagrami.cd to Cars.cd).

Add New Item - Basicinheritance ? X
4 |nstalled Sort by: Default - ;E’ = Search Installed Templates (Ctrl+E) P~
4 Visual C# ftems m Component Class Visual C# ltems . Type: Visual C# tems
Code A blank class diagram
Data ?ﬁ Application Configuration... Visual C# Items
General
b Web Application Manifest File Visual C# ltems
Windows Forms
—cs
WFF B] Assembly Information File Visual C# Items
b ASP.NET Core
SQL Server E Bitmap File Visual C# Items
Storm Items
i I #
o % Class Diagram Visual C# Items
E Code Analysis Rule Set Visual C# Items
W Cursor File Visual C# Items
Name: Cars.cd
Add | l Cancel

Figure 6-2. Inserting a new class diagram

After you click the Add button, you will be presented with a blank designer surface. To add types to a
class designer, simply drag each file from the Solution Explorer window onto the surface. Also recall that if
you delete an item from the visual designer (simply by selecting it and pressing the Delete key), this will not
destroy the associated source code but simply remove the item off the designer surface. Figure 6-3 shows the
current class hierarchy.

218

http://dx.doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

;'QJ Basiclnheritance

Carscd +® X

(Car Program

Class Class

4 Fields 4 Methods
@, currSpeed @, Main

@ maxSpeed
4 Properties
& Speed
4 Methods

@ Car(+ 1 overload)
.

MiniVan
Class
=+ Car

Figure 6-3. The visual designer of Visual Studio

Beyond simply displaying the relationships of the types within your current application, recall from
Chapter 2 that you can also create new types and populate their members using the Class Designer toolbox
and Class Details window.

If you want to make use of these visual tools during the remainder of the book, feel free. However,
always make sure you analyze the generated code so you have a solid understanding of what these tools have
done on your behalf.

Source Code You can find the BasicInheritance project in the Chapter 6 subdirectory.

219

http://dx.doi.org/10.1007/978-1-4842-3018-3_2
http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

The Second Pillar of O0P: The Details of Inheritance

Now that you have seen the basic syntax of inheritance, let’s create a more complex example and get to
know the numerous details of building class hierarchies. To do so, you will be reusing the Employee class you
designed in Chapter 5. To begin, create a new C# Console Application project named Employees.

Next, activate the Project » Add Existing Item menu option and navigate to the location of your
Employee.cs and Employee.Core.cs files you created in the EmployeeApp example of Chapter 5. Select
each of them (via a Ctrl+click) and click the Add button. Visual Studio responds by copying each file into the
current project (because these are full copies, you will not need to worry about changing the original work
you did in the Chapter 5 project).

Before you start to build some derived classes, you have one detail to attend to. Because the original
Employee class was created in a project named EmployeeApp, the class has been wrapped within an
identically named .NET namespace. Chapter 14 will examine namespaces in detail; however, for simplicity,
rename the current namespace (in both file locations) to Employees to match your new project name.

// Be sure to change the namespace name in both Ci# files!
namespace Employees

partial class Employee
{...}
}

Note As a sanity check, compile and run your new project by pressing Ctrl+F5. The program will not do
anything at this point; however, this will ensure you do not have any compiler errors.

Your goal is to create a family of classes that model various types of employees in a company. Assume
you want to leverage the functionality of the Employee class to create two new classes (SalesPerson and
Manager). The new SalesPerson class “is-an” Employee (as is a Manager). Remember that under the classical
inheritance model, base classes (such as Employee) are used to define general characteristics that are
common to all descendants. Subclasses (such as SalesPerson and Manager) extend this general functionality
while adding more specific functionality.

For your example, you will assume that the Manager class extends Employee by recording the number
of stock options, while the SalesPerson class maintains the number of sales made. Insert a new class file
(Manager.cs) that defines the Manager class with the following automatic property:

// Managers need to know their number of stock options.
class Manager : Employee

{
public int StockOptions { get; set; }

}

Next, add another new class file (SalesPerson.cs) that defines the SalesPerson class with a fitting
automatic property.

// Salespeople need to know their number of sales.
class SalesPerson : Employee

{
public int SalesNumber { get; set; }

}

220

http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_14

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Now that you have established an “is-a” relationship, SalesPerson and Manager have automatically
inherited all public members of the Employee base class. To illustrate, update your Main() method as follows:

// Create a subclass object and access base class functionality.
static void Main(string[] args)

{
Console.WriteLine("***** The Employee Class Hierarchy *****\n");
SalesPerson fred = new SalesPerson();
fred.Age = 31;
fred.Name = "Fred";
fred.SalesNumber = 50;
Console.ReadLine();
}

Controlling Base Class Creation with the base Keyword

Currently, SalesPerson and Manager can be created only using the “freebie” default constructor
(see Chapter 5). With this in mind, assume you have added a new six-argument constructor to the Manager
type, which is invoked as follows:

static void Main(string[] args)

{
// Assume Manager has a constructor matching this signature:
// (string fullName, int age, int empID,
// float currPay, string ssn, int numbOfOpts)

Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
Console.ReadlLine();

If you look at the parameter list, you can clearly see that most of these arguments should be stored
in the member variables defined by the Employee base class. To do so, you might implement this custom
constructor on the Manager class as follows:

public Manager(string fullName, int age, int empID,
float currPay, string ssn, int numbOfOpts)

{
// This property is defined by the Manager class.
StockOptions = numbOfOpts;
// Assign incoming parameters using the
// inherited properties of the parent class.
ID = empID;
Age = age;
Name = fullName;
Pay = currPay;
// 00PS! This would be a compiler error,
// if the SSN property were read-only!
SocialSecurityNumber = ssn;
}

221

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

The first issue with this approach is that if you defined any property as read-only (for example, the
SocialSecurityNumber property), you are unable to assign the incoming string parameter to this field, as
shown in the final code statement of this custom constructor.

The second issue is that you have indirectly created a rather inefficient constructor, given that under
C#, unless you say otherwise, the default constructor of a base class is called automatically before the logic
of the derived constructor is executed. After this point, the current implementation accesses numerous
public properties of the Employee base class to establish its state. Thus, you have really made seven hits (five
inherited properties and two constructor calls) during the creation of a Manager object!

To help optimize the creation of a derived class, you will do well to implement your subclass
constructors to explicitly call an appropriate custom base class constructor, rather than the default. In this
way, you are able to reduce the number of calls to inherited initialization members (which saves processing
time). First, ensure your Employee parent class has the following five-argument constructor:

// Add to the Employee base class.

public Employee(string name, int age, int id, float pay, string ssn)
:this(name, age, id, pay)
{

}

empSSN = ssn;

Now, let’s retrofit the custom constructor of the Manager type to do this very thing using the base keyword.

public Manager(string fullName, int age, int empID,
float currPay, string ssn, int numbOfOpts)
: base(fullName, age, empID, currPay, ssn)
{
// This property is defined by the Manager class.
StockOptions = numbOfOpts;

}

Here, the base keyword is hanging off the constructor signature (much like the syntax used to chain
constructors on a single class using the this keyword, as was discussed in Chapter 5), which always
indicates a derived constructor is passing data to the immediate parent constructor. In this situation, you are
explicitly calling the five-parameter constructor defined by Employee and saving yourself unnecessary calls
during the creation of the child class. The custom SalesPerson constructor looks almost identical.

// As a general rule, all subclasses should explicitly call an appropriate
// base class constructor.
public SalesPerson(string fullName, int age, int empID,
float currPay, string ssn, int numbOfSales)
: base(fullName, age, empID, currPay, ssn)
{

// This belongs with us!
SalesNumber = numbOfSales;

}

Note You may use the base keyword whenever a subclass wants to access a public or protected member
defined by a parent class. Use of this keyword is not limited to constructor logic. You will see examples using
base in this manner during the examination of polymorphism, later in this chapter.

222

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Finally, recall that once you add a custom constructor to a class definition, the default constructor is
silently removed. Therefore, be sure to redefine the default constructor for the SalesPerson and Manager
types. Here’s an example:

// Add back the default ctor
// in the Manager class as well.
public SalesPerson() {}

Keeping Family Secrets: The protected Keyword

As you already know, public items are directly accessible from anywhere, while private items can be
accessed only by the class that has defined them. Recall from Chapter 5 that C# takes the lead of many other
modern object languages and provides an additional keyword to define member accessibility: protected.
When a base class defines protected data or protected members, it establishes a set of items that can be
accessed directly by any descendant. If you want to allow the SalesPerson and Manager child classes to directly
access the data sector defined by Employee, you can update the original Employee class definition as follows:

// Protected state data.
partial class Employee
{
// Derived classes can now directly access this information.
protected string empName;
protected int empID;
protected float currPay;
protected int empAge;
protected string empSSN;

The benefit of defining protected members in a base class is that derived types no longer have to
access the data indirectly using public methods or properties. The possible downfall, of course, is that when
a derived type has direct access to its parent’s internal data, it is possible to accidentally bypass existing
business rules found within public properties. When you define protected members, you are creating a level
of trust between the parent class and the child class, as the compiler will not catch any violation of your
type’s business rules.

Finally, understand that as far as the object user is concerned, protected data is regarded as private (as
the user is “outside” the family). Therefore, the following is illegal:

static void Main(string[] args)

{
// Error! Can't access protected data from client code.
Employee emp = new Employee();
emp.empName = "Fred";

}

Note Although protected field data can break encapsulation, it is quite safe (and useful) to define
protected methods. When building class hierarchies, it is common to define a set of methods that are only for
use by derived types and are not intended for use by the outside world.

223

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Adding a Sealed Class

Recall that a sealed class cannot be extended by other classes. As mentioned, this technique is most often
used when you are designing a utility class. However, when building class hierarchies, you might find that
a certain branch in the inheritance chain should be “capped off” as it makes no sense to further extend
the linage. For example, assume you have added yet another class to your program (PTSalesPerson) that
extends the existing SalesPerson type. Figure 6-4 shows the current update.

«)

Employee

Class
- =
Manager ¥ SalesPerson ¥
Class Class
= Employee < Employee
\ § 2
- ==
PTSalesPerson ¥
Class
= SalesPerson

Figure 6-4. The PTSalesPerson class

PTSalesPerson is a class representing, of course, a part-time salesperson. For the sake of argument,
let’s say you want to ensure that no other developer is able to subclass from PTSalesPerson. (After all, how
much more part-time can you get than “part-time”?) Again, to prevent others from extending a class, use the
sealed keyword.

sealed class PTSalesPerson : SalesPerson
{
public PTSalesPerson(string fullName, int age, int empID,
float currPay, string ssn, int numbOfSales)
:base (fullName, age, empID, currPay, ssn, numbOfSales)
{
}

// Assume other members here...

224

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Programming for Containment/Delegation

Recall that code reuse comes in two flavors. You have just explored the classical “is-a” relationship. Before
you examine the third pillar of OOP (polymorphism), let’s examine the “has-a” relationship (also known
as the containment/delegation model or aggregation). Assume you have created a new class that models an
employee benefits package, as follows:

// This new type will function as a contained class.
class BenefitPackage
{

// Assume we have other members that represent

// dental/health benefits, and so on.

public double ComputePayDeduction()

{

return 125.0;

}

}

Obviously, it would be rather odd to establish an “is-a” relationship between the BenefitPackage class
and the employee types. (Employee “is-a” BenefitPackage? I don't think so.) However, it should be clear
that some sort of relationship between the two could be established. In short, you would like to express the
idea that each employee “has-a” BenefitPackage. To do so, you can update the Employee class definition as
follows:

// Employees now have benefits.
partial class Employee
{
// Contain a BenefitPackage object.
protected BenefitPackage empBenefits = new BenefitPackage();

At this point, you have successfully contained another object. However, exposing the functionality of
the contained object to the outside world requires delegation. Delegation is simply the act of adding public
members to the containing class that use the contained object’s functionality.

For example, you could update the Employee class to expose the contained empBenefits object
using a custom property, as well as make use of its functionality internally using a new method named
GetBenefitCost().

partial class Employee

{
// Contain a BenefitPackage object.

protected BenefitPackage empBenefits = new BenefitPackage();
// Expose certain benefit behaviors of object.

public double GetBenefitCost()
{ return empBenefits.ComputePayDeduction(); }

225

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

// Expose object through a custom property.
public BenefitPackage Benefits

{
get { return empBenefits; }
set { empBenefits = value; }
}
}

In the following updated Main() method, notice how you can interact with the internal
BenefitsPackage type defined by the Employee type:

static void Main(string[] args)

{

Console.WriteLine("***** The Employee Class Hierarchy *¥¥**\n");

Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
double cost = chucky.GetBenefitCost();
Console.ReadLine();

}

Understanding Nested Type Definitions

Chapter 5 briefly mentioned the concept of nested types, which is a spin on the “has-a” relationship you
have just examined. In C# (as well as other .NET languages), it is possible to define a type (enum, class,
interface, struct, or delegate) directly within the scope of a class or structure. When you have done so, the
nested (or “inner”) type is considered a member of the nesting (or “outer”) class and in the eyes of the
runtime can be manipulated like any other member (fields, properties, methods, and events). The syntax
used to nest a type is quite straightforward.

public class OuterClass

{
// A public nested type can be used by anybody.
public class PublicInnerClass {}

// A private nested type can only be used by members
// of the containing class.
private class PrivateInnerClass {}

Although the syntax is fairly clear, understanding why you would want to do this might not be readily
apparent. To understand this technique, ponder the following traits of nesting a type:

e Nested types allow you to gain complete control over the access level of the inner
type because they may be declared privately (recall that non-nested classes cannot
be declared using the private keyword).

e Because a nested type is a member of the containing class, it can access private
members of the containing class.

e Often, a nested type is useful only as a helper for the outer class and is not intended
for use by the outside world.

226

http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

When a type nests another class type, it can create member variables of the type, just as it would for any
point of data. However, if you want to use a nested type from outside the containing type, you must qualify it
by the scope of the nesting type. Consider the following code:

static void Main(string[] args)

{
// Create and use the public inner class. OK!
OuterClass.PublicInnerClass inner;
inner = new OuterClass.PublicInnerClass();

// Compiler Error! Cannot access the private class.

OuterClass.PrivateInnerClass inner2;
inner2 = new OuterClass.PrivateInnerClass();

To use this concept within the employees example, assume you have now nested the BenefitPackage
directly within the Employee class type.

partial class Employee

{
public class BenefitPackage
{
// Assume we have other members that represent
// dental/health benefits, and so on.
public double ComputePayDeduction()
{
return 125.0;
}
}
}

The nesting process can be as “deep” as you require. For example, assume you want to create an
enumeration named BenefitPackagelevel, which documents the various benefit levels an employee
may choose. To programmatically enforce the tight connection between Employee, BenefitPackage, and
BenefitPackagelevel, you could nest the enumeration as follows:

// Employee nests BenefitPackage.

public partial class Employee

{
// BenefitPackage nests BenefitPackagelevel.
public class BenefitPackage

{

public enum BenefitPackagelevel

{
Standard, Gold, Platinum

}

227

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

public double ComputePayDeduction()
{

}
}

return 125.0;

Because of the nesting relationships, note how you are required to make use of this enumeration:

static void Main(string[] args)

{

// Define my benefit level.
Employee.BenefitPackage.BenefitPackagelLevel myBenefitlLevel =

Employee.BenefitPackage.BenefitPackagelevel.Platinum;
Console.ReadlLine();

}

Excellent! At this point, you have been exposed to a number of keywords (and concepts) that allow you
to build hierarchies of related types via classical inheritance, containment, and nested types. If the details
aren’t crystal clear right now, don’t sweat it. You will be building a number of additional hierarchies over the
remainder of this book. Next up, let’s examine the final pillar of OOP: polymorphism.

The Third Pillar of O0P: C#’s Polymorphic Support

Recall that the Employee base class defined a method named GiveBonus (), which was originally
implemented as follows:

public partial class Employee

{
public void GiveBonus(float amount)
{
Pay += amount;
}
}

Because this method has been defined with the public keyword, you can now give bonuses to
salespeople and managers (as well as part-time salespeople).

static void Main(string[] args)

{

Console.WriteLine("***** The Employee Class Hierarchy *¥¥**\n");

// Give each employee a bonus?

Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
chucky.GiveBonus(300);

chucky.DisplayStats();

Console.Writeline();

228

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
fran.GiveBonus(200);
fran.DisplayStats();
Console.ReadlLine();

The problem with the current design is that the publicly inherited GiveBonus () method operates
identically for all subclasses. Ideally, the bonus of a salesperson or part-time salesperson should take into
account the number of sales. Perhaps managers should gain additional stock options in conjunction with a
monetary bump in salary. Given this, you are suddenly faced with an interesting question: “How can related
types respond differently to the same request?” Again, glad you asked!

The virtual and override Keywords

Polymorphism provides a way for a subclass to define its own version of a method defined by its base class,
using the process termed method overriding. To retrofit your current design, you need to understand the
meaning of the virtual and override keywords. If a base class wants to define a method that may be

(but does not have to be) overridden by a subclass, it must mark the method with the virtual keyword.

partial class Employee

{
// This method can now be "overridden" by a derived class.
public virtual void GiveBonus(float amount)

{

Pay += amount;

}

Note Methods that have been marked with the virtual keyword are (not surprisingly) termed virtual
methods.

When a subclass wants to change the implementation details of a virtual method, it does so using the
override keyword. For example, the SalesPerson and Manager could override GiveBonus () as follows
(assume that PTSalesPerson will not override GiveBonus () and, therefore, simply inherits the version
defined by SalesPerson):

class SalesPerson : Employee
{
// A salesperson's bonus is influenced by the number of sales.
public override void GiveBonus(float amount)
{
int salesBonus = 0;
if (SalesNumber >= 0 &3 SalesNumber <= 100)

salesBonus = 10;
else

229

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

{

if (SalesNumber >= 101 &3 SalesNumber <= 200)
salesBonus = 15;
else
salesBonus = 20;
}

base.GiveBonus(amount * salesBonus);

}
}

class Manager : Employee

{

public override void GiveBonus(float amount)
{
base.GiveBonus(amount);
Random r = new Random();
StockOptions += r.Next(500);
}
}

Notice how each overridden method is free to leverage the default behavior using the base keyword.

In this way, you have no need to completely reimplement the logic behind GiveBonus () but can reuse
(and possibly extend) the default behavior of the parent class.

Also assume that the current DisplayStats() method of the Employee class has been declared virtually.

public virtual void DisplayStats()

{
Console.WritelLine("Name: {0}", Name);
Console.WriteLine("ID: {o0}", ID);
Console.WriteLine("Age: {0}", Age);
Console.WriteLine("Pay: {0}", Pay);
Console.WriteLine("SSN: {0}", SocialSecurityNumber);
}

By doing so, each subclass can override this method to account for displaying the number of sales (for
salespeople) and current stock options (for managers). For example, consider the Manager’s version of the
DisplayStats() method (the SalesPerson class would implement DisplayStats() in a similar manner to
show the number of sales).

public override void DisplayStats()

{
base.DisplayStats();

Console.WriteLine("Number of Stock Options: {0}", StockOptions);
}

Now that each subclass can interpret what these virtual methods mean for itself, each object instance
behaves as a more independent entity.

230

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

static void Main(string[] args)

{

Console.WriteLine("***** The Employee Class Hierarchy ***¥*\n");

// A better bonus system!

Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
chucky.GiveBonus(300);

chucky.DisplayStats();

Console.Writeline();

SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
fran.GiveBonus(200);

fran.DisplayStats();
Console.ReadlLine();

The following output shows a possible test run of your application thus far:

*¥*xx* The Employee Class Hierarchy *****

Name: Chucky

ID: 92
Age: 50
Pay: 100300

SSN: 333-23-2322
Number of Stock Options: 9337

Name: Fran
ID: 93
Age: 43
Pay: 5000

SSN: 932-32-3232
Number of Sales: 31

Overriding Virtual Members Using the Visual Studio IDE

As you might have already noticed, when you are overriding a member, you must recall the type of every
parameter—not to mention the method name and parameter passing conventions (ref, out, and params).
Visual Studio has a helpful feature that you can make use of when overriding a virtual member. If you type
the word override within the scope of a class type (then hit the spacebar), IntelliSense will automatically
display a list of all the overridable members defined in your parent classes, as you see in Figure 6-5.

231

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

SalesPerson.cs™ + X EOIEad: T -
[c#] Employees -I%Employees.SalesPerso .I@ SalesPerson(string full ~
-Inamespace Employees ES
{ -
// Salespeople need to know their number of sales.
- class SalesPerson : Employee
{
+ [constr‘uctors]
.pu_b-].:i.ch;i.nt SalesNumber { get; set; }
* "
override |
- H @ Equals(object obj)
L} (&M GetHashCode()
@ ToString()
v
98 % - 4 >

Figure 6-5. Quickly viewing overridable methods a la Visual Studio

When you select a member and hit the Enter key, the IDE responds by automatically filling in the
method stub on your behalf. Note that you also receive a code statement that calls your parent’s version
of the virtual member (you are free to delete this line if it is not required). For example, if you used this
technique when overriding the DisplayStats() method, you might find the following autogenerated code:

public override void DisplayStats()

{
base.DisplayStats();

}

232

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Sealing Virtual Members

Recall that the sealed keyword can be applied to a class type to prevent other types from extending its
behavior via inheritance. As you might remember, you sealed PTSalesPerson because you assumed it made
no sense for other developers to extend this line of inheritance any further.

On a related note, sometimes you might not want to seal an entire class but simply want to prevent
derived types from overriding particular virtual methods. For example, assume you do not want part-time
salespeople to obtain customized bonuses. To prevent the PTSalesPerson class from overriding the virtual
GiveBonus () method, you could effectively seal this method in the SalesPerson class as follows:

// SalesPerson has sealed the GiveBonus() method!
class SalesPerson : Employee

{

public override sealed void GiveBonus(float amount)

{

-
}

Here, SalesPerson has indeed overridden the virtual GiveBonus () method defined in the Employee
class; however, it has explicitly marked it as sealed. Thus, if you attempted to override this method in the
PTSalesPerson class, you would receive compile-time errors, as shown in the following code:

sealed class PTSalesPerson : SalesPerson
{
public PTSalesPerson(string fullName, int age, int empID,
float currPay, string ssn, int numbOfSales)
:base (fullName, age, empID, currPay, ssn, numbOfSales)

{
}

// Compiler error! Can't override this method
// in the PTSalesPerson class, as it was sealed.
public override void GiveBonus(float amount)
{
}

}

Understanding Abstract Classes

Currently, the Employee base class has been designed to supply various data members for its descendants,
as well as supply two virtual methods (GiveBonus() and DisplayStats()) that may be overridden by a given
descendant. While this is all well and good, there is a rather odd byproduct of the current design; you can
directly create instances of the Employee base class.

// What exactly does this mean?
Employee X = new Employee();

233

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

In this example, the only real purpose of the Employee base class is to define common members for all
subclasses. In all likelihood, you did not intend anyone to create a direct instance of this class, reason being
that the Employee type itself is too general of a concept. For example, if I were to walk up to you and say,
“I'm an employee!” I would bet your first question to me would be, “What kind of employee are you?” Are
you a consultant, trainer, admin assistant, copyeditor, or White House aide?

Given that many base classes tend to be rather nebulous entities, a far better design for this example
is to prevent the ability to directly create a new Employee object in code. In C#, you can enforce this
programmatically by using the abstract keyword in the class definition, thus creating an abstract base class.

// Update the Employee class as abstract
// to prevent direct instantiation.
abstract partial class Employee

{
L

With this, if you now attempt to create an instance of the Employee class, you are issued a compile-time
error.

// Error! Cannot create an instance of an abstract class!
Employee X = new Employee();

At first glance, it might seem strange to define a class that you cannot directly create an instance of.
Recall, however, that base classes (abstract or not) are useful, in that they contain all the common data
and functionality of derived types. Using this form of abstraction, you are able to model that the “idea” of
an employee is completely valid; it is just not a concrete entity. Also understand that although you cannot
directly create an instance of an abstract class, it is still assembled in memory when derived classes are
created. Thus, it is perfectly fine (and common) for abstract classes to define any number of constructors
that are called indirectly when derived classes are allocated.

At this point, you have constructed a fairly interesting employee hierarchy. You will add a bit more
functionality to this application later in this chapter when examining C# casting rules. Until then, Figure 6-6
illustrates the crux of your current design.

234

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

“

Employee @
Abstract Class
Fields
Properties
Methods
& Nested Types
" BenefitPackage @)
Class
& Methods
® ComputePayDeduction
= Nested Types
BenefitPackagelevel @
Enum
Standard
Gold
Platinum
\; Y,
IIS A
[e ST,
Manager ®) SalesPerson @
Class Class
- Employee < Employee
Properties
Methods
\ J
T
rP'I"’.ialesf’el'sm'.m (_3:3
Sealed Class
+ SalesPerson
\ y,

Figure 6-6. The Employee hierarchy

235

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Source Code You can find the Employees project in the Chapter 6 subdirectory.

Understanding the Polymorphic Interface

When a class has been defined as an abstract base class (via the abstract keyword), it may define any
number of abstract members. Abstract members can be used whenever you want to define a member that
does not supply a default implementation but must be accounted for by each derived class. By doing so, you
enforce a polymorphic interface on each descendant, leaving them to contend with the task of providing the
details behind your abstract methods.

Simply put, an abstract base class’s polymorphic interface simply refers to its set of virtual and abstract
methods. This is much more interesting than first meets the eye because this trait of OOP allows you to build
easily extendable and flexible software applications. To illustrate, you will be implementing (and slightly
modifying) the hierarchy of shapes briefly examined in Chapter 5 during the overview of the pillars of OOP.
To begin, create a new C# Console Application project named Shapes.

In Figure 6-7, notice that the Hexagon and Circle types each extend the Shape base class. Like any base
class, Shape defines a number of members (a PetName property and Draw() method, in this case) that are
common to all descendants.

gl'z'Shapc (&
i Abstract Class
= Properties
Cl: KM PetName :[3
| & Methods
| @ Drow |
| ® Shape (+ 1 overload)
o
=\
Circle ¥ Hexagon ¥
Class Class
= Shape = Shape
5|3 - -
/4 -\
ThreeDCircle £
Class
= Circle
2

Figure 6-7. The shapes hierarchy

236

http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Much like the employee hierarchy, you should be able to tell that you don’t want to allow the object user
to create an instance of Shape directly, as it is too abstract of a concept. Again, to prevent the direct creation
of the Shape type, you could define it as an abstract class. As well, given that you want the derived types to
respond uniquely to the Draw() method, let’s mark it as virtual and define a default implementation.

// The abstract base class of the hierarchy.
abstract class Shape
{

public Shape(string name = "NoName")

{ PetName = name; }

public string PetName { get; set; }

// A single virtual method.
public virtual void Draw()
{
Console.WriteLine("Inside Shape.Draw()");
}
}

Notice that the virtual Draw() method provides a default implementation that simply prints out a
message that informs you that you are calling the Draw() method within the Shape base class. Now recall that
when a method is marked with the virtual keyword, the method provides a default implementation that all
derived types automatically inherit. If a child class so chooses, it may override the method but does not have
to. Given this, consider the following implementation of the Circle and Hexagon types:

// Circle DOES NOT override Draw().
class Circle : Shape
{
public Circle() {}
public Circle(string name) : base(name){}

}

// Hexagon DOES override Draw().
class Hexagon : Shape
{
public Hexagon() {}
public Hexagon(string name) : base(name){}
public override void Draw()
{
Console.WriteLine("Drawing {0} the Hexagon", PetName);
}
}

The usefulness of abstract methods becomes crystal clear when you once again remember that
subclasses are never required to override virtual methods (as in the case of Circle). Therefore, if you create
an instance of the Hexagon and Circle types, you'd find that the Hexagon understands how to “draw” itself
correctly or at least print out an appropriate message to the console. The Circle, however, is more than a bit
confused.

237

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Polymorphism ***¥¥\n");

Hexagon hex = new Hexagon("Beth");
hex.Draw();

Circle cir = new Circle("Cindy");
// Calls base class implementation!
cir.Draw();

Console.ReadlLine();

Now consider the following output of the previous Main() method:

kbl Fun with Polymorphism *dokk

Drawing Beth the Hexagon
Inside Shape.Draw()

Clearly, this is not an intelligent design for the current hierarchy. To force each child class to override
the Draw() method, you can define Draw() as an abstract method of the Shape class, which by definition
means you provide no default implementation whatsoever. To mark a method as abstract in C#, you use the
abstract keyword. Notice that abstract members do not provide any implementation whatsoever.

abstract class Shape

{
// Force all child classes to define how to be rendered.
public abstract void Draw();

Note Abstract methods can be defined only in abstract classes. If you attempt to do otherwise, you will be
issued a compiler error.

Methods marked with abstract are pure protocol. They simply define the name, return type (if any),
and parameter set (if required). Here, the abstract Shape class informs the derived types that “I have a
method named Draw() that takes no arguments and returns nothing. If you derive from me, you figure out
the details.”

Given this, you are now obligated to override the Draw() method in the Circle class. If you do not,
Circleis also assumed to be a noncreatable abstract type that must be adorned with the abstract keyword
(which is obviously not useful in this example). Here is the code update:

// If we did not implement the abstract Draw() method, Circle would also be
// considered abstract, and would have to be marked abstract!
class Circle : Shape
{
public Circle() {}
public Circle(string name) : base(name) {}

238

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

public override void Draw()
{
Console.WriteLine("Drawing {0} the Circle", PetName);
}
}

The short answer is that you can now assume that anything deriving from Shape does indeed have a
unique version of the Draw() method. To illustrate the full story of polymorphism, consider the following
code:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Polymorphism ***¥¥\n");

// Make an array of Shape-compatible objects.
Shape[] myShapes = {new Hexagon(), new Circle(), new Hexagon("Mick"),
new Circle("Beth"), new Hexagon("Linda")};

// Loop over each item and interact with the
// polymorphic interface.
foreach (Shape s in myShapes)

s.Draw();

}

Console.ReadlLine();

Here is the output from the modified Main() method:

*¥xx% Fun with Polymorphism ***

Drawing NoName the Hexagon
Drawing NoName the Circle
Drawing Mick the Hexagon
Drawing Beth the Circle
Drawing Linda the Hexagon

This Main() method illustrates polymorphism at its finest. Although it is not possible to directly create
an instance of an abstract base class (the Shape), you are able to freely store references to any subclass with
an abstract base variable. Therefore, when you are creating an array of Shapes, the array can hold any object
deriving from the Shape base class (if you attempt to place Shape-incompatible objects into the array, you
receive a compiler error).

Given that all items in the myShapes array do indeed derive from Shape, you know they all support the
same “polymorphic interface” (or said more plainly, they all have a Draw() method). As you iterate over the
array of Shape references, it is at runtime that the underlying type is determined. At this point, the correct
version of the Draw() method is invoked in memory.

This technique also makes it simple to safely extend the current hierarchy. For example, assume
you derived more classes from the abstract Shape base class (Triangle, Square, etc.). Because of the
polymorphic interface, the code within your foreach loop would not have to change in the slightest, as the
compiler enforces that only Shape-compatible types are placed within the myShapes array.

239

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Understanding Member Shadowing

C# provides a facility that is the logical opposite of method overriding, termed shadowing. Formally
speaking, if a derived class defines a member that is identical to a member defined in a base class, the
derived class has shadowed the parent’s version. In the real world, the possibility of this occurring is the
greatest when you are subclassing from a class you (or your team) did not create yourself (such as when you
purchase a third-party .NET software package).

For the sake of illustration, assume you receive a class named ThreeDCircle from a co-worker (or
classmate) that defines a subroutine named Draw() taking no arguments.

class ThreeDCircle

{
public void Draw()

{

}
}

Console.WriteLine("Drawing a 3D Circle");

You figure that a ThreeDCircle “is-a” Circle, so you derive from your existing Circle type.

class ThreeDCircle : Circle

{
public void Draw()

{

}
}

Console.WriteLine("Drawing a 3D Circle");

After you recompile, you find the following warning:

'ThreeDCircle.Draw()" hides inherited member 'Circle.Draw()'. To make the current member
override that implementation, add the override keyword. Otherwise add the new keyword.

The problem is that you have a derived class (ThreeDCircle) that contains a method that is identical
to an inherited method. To address this issue, you have a few options. You could simply update the parent’s
version of Draw() using the override keyword (as suggested by the compiler). With this approach, the
ThreeDCircle type is able to extend the parent’s default behavior as required. However, if you don’t have
access to the code defining the base class (again, as would be the case in many third- party libraries), you
would be unable to modify the Draw() method as a virtual member, as you don’t have access to the code file!
As an alternative, you can include the new keyword to the offending Draw() member of the derived
type (ThreeDCircle, in this example). Doing so explicitly states that the derived type’s implementation is
intentionally designed to effectively ignore the parent’s version (again, in the real world, this can be helpful if
external .NET software somehow conflicts with your current software).

// This class extends Circle and hides the inherited Draw() method.
class ThreeDCircle : Circle

{
// Hide any Draw() implementation above me.
public new void Draw()

240

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

{
Console.Writeline("Drawing a 3D Circle");
}
}

You can also apply the new keyword to any member type inherited from a base class (field, constant,
static member, or property). As a further example, assume that ThreeDCircle wants to hide the inherited
PetName property.

class ThreeDCircle : Circle

{
// Hide the PetName property above me.
public new string PetName { get; set; }

// Hide any Draw() implementation above me.
public new void Draw()

{

Console.WriteLine("Drawing a 3D Circle");

}
}

Finally, be aware that it is still possible to trigger the base class implementation of a shadowed member
using an explicit cast, as described in the next section. The following code shows an example:

static void Main(string[] args)

{

// This calls the Draw() method of the ThreeDCircle.
ThreeDCircle o = new ThreeDCircle();
o.Draw();

// This calls the Draw() method of the parent!
((Circle)o).Draw();
Console.ReadlLine();

}

Source Code You can find the Shapes project in the Chapter 6 subdirectory.

Understanding Base Class/Derived Class Casting Rules

Now that you can build a family of related class types, you need to learn the rules of class casting operations.
To do so, let’s return to the Employees hierarchy created earlier in this chapter and add some new methods
to the Program class (if you are following along, open the Employees project in Visual Studio). As described
later in this chapter, the ultimate base class in the system is System.0Object. Therefore, everything “is-an”
Object and can be treated as such. Given this fact, it is legal to store an instance of any type within an object
variable.

241

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

static void CastingExamples()

{

// A Manager "is-a" System.Object, so we can

// store a Manager reference in an object variable just fine.

object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);
}

In the Employees project, Managers, SalesPerson, and PTSalesPerson types all extend Employee,
so you can store any of these objects in a valid base class reference. Therefore, the following statements are
also legal:

static void CastingExamples()

{

// A Manager "is-a" System.Object, so we can

// store a Manager reference in an object variable just fine.

object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);

// A Manager "is-an" Employee too.

Employee moonUnit = new Manager("MoonUnit Zappa", 2, 3001, 20000, "101-11-1321", 1);

// A PTSalesPerson "is-a" SalesPerson.

SalesPerson jill = new PTSalesPerson(“Jill", 834, 3002, 100000, "111-12-1119", 90);
}

The first law of casting between class types is that when two classes are related by an “is-a” relationship,
it is always safe to store a derived object within a base class reference. Formally, this is called an implicit cast,
as “it just works” given the laws of inheritance. This leads to some powerful programming constructs. For
example, assume you have defined a new method within your current Program class.

static void GivePromotion(Employee emp)

{

// Increase pay...
// Give new parking space in company garage...

Console.WritelLine("{0} was promoted!", emp.Name);

}

Because this method takes a single parameter of type Employee, you can effectively pass any descendant
from the Employee class into this method directly, given the “is-a” relationship.

static void CastingExamples()
{
// A Manager "is-a" System.Object, so we can
// store a Manager reference in an object variable just fine.
object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);

// A Manager "is-an" Employee too.

Employee moonUnit = new Manager("MoonUnit Zappa", 2, 3001, 20000, "101-11-1321", 1);
GivePromotion(moonUnit);

242

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

// A PTSalesPerson "is-a" SalesPerson.
SalesPerson jill = new PTSalesPerson("Jill", 834, 3002, 100000, "111-12-1119", 90);
GivePromotion(jill);

}

The previous code compiles given the implicit cast from the base class type (Employee) to the derived
type. However, what if you also wanted to promote Frank Zappa (currently stored in a general System.
Object reference)? If you pass the frank object directly into this method, you will find a compiler error as
follows:

object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);
// Error!
GivePromotion(frank);

The problem is that you are attempting to pass in a variable that is not declared as an Employee but
amore general System.0Object. Given that object is higher up the inheritance chain than Employee, the
compiler will not allow for an implicit cast, in an effort to keep your code as type-safe as possible.

Even though you can figure out that the object reference is pointing to an Employee-compatible class
in memory, the compiler cannot, as that will not be known until runtime. You can satisfy the compiler by
performing an explicit cast. This is the second law of casting: you can, in such cases, explicitly downcast
using the C# casting operator. The basic template to follow when performing an explicit cast looks
something like the following:

(ClassIWantToCastTo)referenceIHave
Thus, to pass the object variable into the GivePromotion() method, you could author the following code:

// OK!
GivePromotion((Manager)frank);

The C# as Keyword

Be aware that explicit casting is evaluated at runtime, not compile time. For the sake of argument, assume
your Employees project had a copy of the Hexagon class created earlier in this chapter. For simplicity, you
could add the following class to the current project:

class Hexagon

{

public void Draw() { Console.Writeline("Drawing a hexagon!"); }

}

Although casting the employee object to a shape object makes absolutely no sense, code such as the
following could compile without error:

// Ack! You can't cast frank to a Hexagon, but this compiles fine!

object frank = new Manager();
Hexagon hex = (Hexagon)frank;

243

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

However, you would receive a runtime error, or, more formally, a runtime exception. Chapter 7 will
examine the full details of structured exception handling; however, it is worth pointing out, for the time
being, that when you are performing an explicit cast, you can trap the possibility of an invalid cast using the
try and catch keywords (again, see Chapter 7 for full details).

// Catch a possible invalid cast.
object frank = new Manager();
Hexagon hex;

try

hex = (Hexagon)frank;
}

catch (InvalidCastException ex)

{

Console.WriteLine(ex.Message);

}

Obviously this is a contrived example; you would never bother casting between these types in this
situation. However, assume you have an array of System.Object types, only a few of which contain
Employee-compatible objects. In this case, you would like to determine whether an item in an array is
compatible to begin with and, if so, perform the cast.

C# provides the as keyword to quickly determine at runtime whether a given type is compatible with
another. When you use the as keyword, you are able to determine compatibility by checking against a null
return value. Consider the following:

// Use "as" to test compatibility.
object[] things = new object[4];
things[0] = new Hexagon();

things[1] = false;
things[2] = new Manager();
things[3] = "Last thing";

foreach (object item in things)

Hexagon h = item as Hexagon;
if (h == null)

Console.WriteLine("Item is not a hexagon");
else

h.Draw();

}
}

Here you loop over each item in the array of objects, checking each one for compatibility with the
Hexagon class. If (and only if!) you find a Hexagon-compatible object, you invoke the Draw() method.
Otherwise, you simply report the items are not compatible.

244

http://dx.doi.org/10.1007/978-1-4842-3018-3_7
http://dx.doi.org/10.1007/978-1-4842-3018-3_7

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

The C# is Keyword (Updated)

In addition to the as keyword, the C# language provides the is keyword to determine whether two items are
compatible. Unlike the as keyword, however, the is keyword returns false, rather than a null reference, if
the types are incompatible. Currently, the GivePromotion() method has been designed to take any possible
type derived from Employee. Consider the following update, which now checks to see exactly which “type of
employee” you have been passed:

static void GivePromotion(Employee emp)
{
Console.WritelLine("{0} was promoted!", emp.Name);
if (emp is SalesPerson)
{
Console.WriteLine("{0} made {1} sale(s)!", emp.Name,
((SalesPerson)emp).SalesNumber);
Console.WritelLine();

}

if (emp is Manager)

Console.WriteLine("{0} had {1} stock options...", emp.Name,
((Manager)emp) .StockOptions);
Console.WriteLine();
}
}

Here, you are performing a runtime check to determine what the incoming base class reference is
actually pointing to in memory. After you determine whether you received a SalesPerson or Manager type,
you are able to perform an explicit cast to gain access to the specialized members of the class. Also notice
that you are not required to wrap your casting operations within a try/catch construct, as you know that the
cast is safe if you enter either if scope, given your conditional check.

New in C# 7, the is keyword can also assign the converted type to a variable if the cast works. This cleans
up the preceding method by preventing the “double-cast” problem. In the preceding example, the first cast
is done when checking to see whether the type matches, and if it does, then the variable has to be cast again.
Consider this update to the preceding method:

static void GivePromotion(Employee emp)

{
Console.WriteLine("{0} was promoted!", emp.Name);
//Check if is SalesPerson, assign to variable s
if (emp is SalesPerson s)

Console.WriteLine("{0} made {1} sale(s)!", emp.Name, s.SalesNumber);
Console.WriteLine();

}

//Check if is Manager, if it is, assign to variable m

if (emp is Manager m)

{
Console.WriteLine("{0} had {1} stock options...", emp.Name, m.StockOptions);
Console.WritelLine();

}

}

245

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Discards with the is Keyword (New)

The is keyword can also be used in conjunction with the new discard variable placeholder. If you want to
create a catchall in your if or switch statement, you can do so as follows:

if (obj is var)
{
//do something

}

This will match everything, so be careful about the order in which you use the comparer with the
discard.

Pattern Matching Revisited (New)

Chapter 3 introduced the C# 7 feature of pattern matching. Now that you have a firm understanding of
casting, it’s time for a better example. The preceding example can now be cleanly updated to use a pattern
matching switch statement, as follows:

static void GivePromotion(Employee emp)

{
Console.WriteLine("{0} was promoted!", emp.Name);
switch (emp)

case SalesPerson s:
Console.WritelLine("{0} made {1} sale(s)!", emp.Name, s.SalesNumber);
break;
case Manager m:
Console.WriteLine("{0} had {1} stock options...", emp.Name, m.StockOptions);
break;
}

Console.WriteLine();

}

When adding a when clause to the case statement, the full definition of the object as it is cast is available
for use. For example, the SalesNumber property exists only on the SalesPerson class, and not the Employee
class. If the cast in the first case statement succeeds, the variable s will hold an instance of a SalesPerson
class, so the case statement could be updated to the following:

case SalesPerson s when s.SalesNumber > 5:

These new additions to the is and switch statements provide nice improvements that help reduce the
amount of code to perform matching, as the previous examples demonstrated.

246

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Discards with switch Statements (New)

Discards can also be used in switch statements, as shown in the following code:
switch (emp)

case SalesPerson s when s.SalesNumber > 5:
Console.WritelLine("{0} made {1} sale(s)!", emp.Name, s.SalesNumber);
break;
case Manager m:
Console.WriteLine("{0} had {1} stock options...", emp.Name, m.StockOptions);
break;
case Intern _:
//Ignore interns
break;
case null:
//Do something when null
break;

The Master Parent Class: System.0Object

To wrap up this chapter, I'd like to examine the details of the master parent class in the .NET platform:
Object. As you were reading the previous section, you might have noticed that the base classes in your
hierarchies (Car, Shape, Employee) never explicitly specify their parent classes.

// Who is the parent of Car?
class Car

{...}

In the .NET universe, every type ultimately derives from a base class named System.0Object, which can
be represented by the C# object keyword (lowercase 0). The Object class defines a set of common members
for every type in the framework. In fact, when you do build a class that does not explicitly define its parent,
the compiler automatically derives your type from Object. If you want to be clear in your intentions, you are
free to define classes that derive from Object as follows (however, again, there is no need to do so):

// Here we are explicitly deriving from System.Object.
class Car : object

{...}

Like any class, System.Object defines a set of members. In the following formal C# definition, note
that some of these items are declared virtual, which specifies that a given member may be overridden by a
subclass, while others are marked with static (and are therefore called at the class level):

public class Object
{

// Virtual members.

public virtual bool Equals(object obj);
protected virtual void Finalize();
public virtual int GetHashCode();
public virtual string ToString();

247

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

// Instance-level, nonvirtual members.

public Type GetType();

protected object MemberwiseClone();

// Static membexs.

public static bool Equals(object objA, object objB);
public static bool ReferenceEquals(object objA, object objB);

Table 6-1 offers a rundown of the functionality provided by some of the methods you're most likely

to use.

Table 6-1. Core Members of System.Object

Instance Method of Object Class

Meaning in Life

Equals()

Finalize()

GetHashCode()
ToString()

GetType()

MemberwiseClone()

By default, this method returns true only if the items being
compared refer to the same item in memory. Thus, Equals() is used
to compare object references, not the state of the object. Typically,
this method is overridden to return true only if the objects being
compared have the same internal state values (that is, value-based
semantics).

Be aware that if you override Equals (), you should also override
GetHashCode(), as these methods are used internally by Hashtable
types to retrieve subobjects from the container.

Also recall from Chapter 4 that the ValueType class overrides
this method for all structures, so they work with value-based
comparisons.

For the time being, you can understand this method (when
overridden) is called to free any allocated resources before the
object is destroyed. I talk more about the CLR garbage collection
services in Chapter 9.

This method returns an int that identifies a specific object instance.

This method returns a string representation of this object, using

the <namespace>.<type name> format (termed the fully qualified
name). This method will often be overridden by a subclass to return
a tokenized string of name/value pairs that represent the object’s
internal state, rather than its fully qualified name.

This method returns a Type object that fully describes the object
you are currently referencing. In short, this is a Runtime Type
Identification (RTTI) method available to all objects (discussed in
greater detail in Chapter 15).

This method exists to return a member-by-member copy of the
current object, which is often used when cloning an object
(see Chapter 8).

248

http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_9
http://dx.doi.org/10.1007/978-1-4842-3018-3_15
http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

To illustrate some of the default behavior provided by the Object base class, create a final C# Console
Application project named ObjectOverrides. Insert a new C# class type that contains the following empty
class definition for a type named Person:

// Remember! Person extends Object.
class Person {}

Now, update your Main() method to interact with the inherited members of System.0bject as follows:

class Program

{

static void Main(string[] args)

{
Console.WritelLine("***** Fun with System.Object *¥*¥*<\n");
Person p1 = new Person();
// Use inherited members of System.Object.
Console.WriteLine("ToString: {0}", p1.ToString());
Console.WriteLine("Hash code: {0}", p1.GetHashCode());
Console.WriteLine("Type: {0}", p1.GetType());
// Make some other references to p1i.
Person p2 = p1;
object o = p2;
// Are the references pointing to the same object in memory?
if (o.Equals(p1) &8 p2.Equals(o))
{

Console.WriteLine("Same instance!");

}
Console.ReadlLine();

}

}

Here is the output of the current Main() method:

Rk Fun with System.Object ki

ToString: ObjectOverrides.Person
Hash code: 46104728

Type: ObjectOverrides.Person
Same instance!

Notice how the default implementation of ToString() returns the fully qualified name of the
current type (ObjectOverrides.Person). As you will see later during the examination of building custom
namespaces in Chapter 14, every C# project defines a “root namespace,” which has the same name of the
project itself. Here, you created a project named ObjectOverrides; thus, the Person type and the Program
class have both been placed within the ObjectOverrides namespace.

The default behavior of Equals() is to test whether two variables are pointing to the same object in
memory. Here, you create a new Person variable named p1. At this point, a new Person object is placed
on the managed heap. p2 is also of type Person. However, you are not creating a new instance but rather

249

http://dx.doi.org/10.1007/978-1-4842-3018-3_14

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

assigning this variable to reference p1. Therefore, p1 and p2 are both pointing to the same object in memory,
as is the variable o (of type object, which was thrown in for good measure). Given that p1, p2, and o all point
to the same memory location, the equality test succeeds.

Although the canned behavior of System.0bject can fit the bill in a number of cases, it is quite common
for your custom types to override some of these inherited methods. To illustrate, update the Person class to
support some properties representing an individual’s first name, last name, and age, each of which can be
set by a custom constructor.

// Remember! Person extends Object.
class Person

{
public string FirstName { get; set; } = "";

public string LastName { get; set; } = "";
public int Age { get; set; }

public Person(string fName, string 1Name, int personAge)
{

FirstName = fName;

LastName = 1Name;

Age = personAge;

}
public Person(){}

Overriding System.Object.ToString()

Many classes (and structures) that you create can benefit from overriding ToString() in order to return a
string textual representation of the type’s current state. This can be quite helpful for purposes of debugging
(among other reasons). How you choose to construct this string is a matter of personal choice; however, a
recommended approach is to separate each name-value pair with semicolons and wrap the entire string
within square brackets (many types in the .NET base class libraries follow this approach). Consider the
following overridden ToString() for your Person class:

public override string ToString() => $"[First Name: {FirstName}; Last Name: {LastName};
Age: {Age}]";

This implementation of ToString() is quite straightforward, given that the Person class has only three
pieces of state data. However, always remember that a proper ToString() override should also account for
any data defined up the chain of inheritance.

When you override ToString() for a class extending a custom base class, the first order of business is to
obtain the ToString() value from your parent using the base keyword. After you have obtained your parent’s
string data, you can append the derived class’s custom information.

Overriding System.Object.Equals()

Let's also override the behavior of Object.Equals() to work with value-based semantics. Recall that by
default, Equals() returns true only if the two objects being compared reference the same object instance in
memory. For the Person class, it may be helpful to implement Equals() to return true if the two variables
being compared contain the same state values (e.g., first name, last name, and age).

250

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

First, notice that the incoming argument of the Equals () method is a general System.Object. Given
this, your first order of business is to ensure the caller has indeed passed in a Person object and, as an extra
safeguard, to make sure the incoming parameter is not a null reference.

After you have established the caller has passed you an allocated Person, one approach to implement
Equals() is to perform a field-by-field comparison against the data of the incoming object to the data of the
current object.

public override bool Equals(object obj)

{
if (obj is Person 8& obj != null)

Person temp;

temp = (Person)obj;

if (temp.FirstName == this.FirstName
&& temp.LastName == this.LastName
88 temp.Age == this.Age)

{
return true;
}
else
{
return false;
}
}
return false;

}

Here, you are examining the values of the incoming object against the values of your internal values
(note the use of the this keyword). If the name and age of each are identical, you have two objects with the
same state data and, therefore, return true. Any other possibility results in returning false.

While this approach does indeed work, you can certainly imagine how labor intensive it would be to
implement a custom Equals () method for nontrivial types that may contain dozens of data fields. One
common shortcut is to leverage your own implementation of ToString(). If a class has a prim-and-proper
implementation of ToString() that accounts for all field data up the chain of inheritance, you can simply
perform a comparison of the object’s string data (checking for null).

// No need to cast "obj" to a Person anymore,
// as everything has a ToString() method.
public override bool Equals(object obj) => obj?.ToString() == ToString();

Notice in this case that you no longer need to check whether the incoming argument is of the correct
type (a Person, in this example), as everything in .NET supports a ToString() method. Even better, you
no longer need to perform a property-by-property equality check, as you are not simply testing the value
returned from ToString().

Overriding System.Object.GetHashCode()

When a class overrides the Equals() method, you should also override the default implementation of
GetHashCode (). Simply put, a hash code is a numerical value that represents an object as a particular state. For
example, if you create two string variables that hold the value Hello, you would obtain the same hash code.
However, if one of the string objects were in all lowercase (hello), you would obtain different hash codes.

251

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

By default, System.Object.GetHashCode() uses your object’s current location in memory to yield the
hash value. However, if you are building a custom type that you intend to store in a Hashtable type (within
the System.Collections namespace), you should always override this member, as the Hashtable will be
internally invoking Equals () and GetHashCode() to retrieve the correct object.

Note To be more specific, the System.Collections.Hashtable class calls GetHashCode() internally to
gain a general idea where the object is located, but a subsequent (internal) call to Equals() determines the
exact match.

Although you are not going to place your Person into a System.Collections.Hashtable, for completion
let’s override GetHashCode(). There are many algorithms that can be used to create a hash code—some
fancy, others not so fancy. Most of the time, you are able to generate a hash code value by leveraging the
System.String’s GetHashCode() implementation.

Given that the String class already has a solid hash code algorithm that is using the character data
of the String to compute a hash value, if you can identify a piece of field data on your class that should be
unique for all instances (such as a Social Security number), simply call GetHashCode () on that point of field
data. Thus, if the Person class defined an SSN property, you could author the following code:

// Assume we have an SSN property as so.
class Person

{
public string SSN {get; set;} = "";

// Return a hash code based on a point of unique string data.
public override int GetHashCode() => SSN.GetHashCode();

}

If you cannot find a single point of unique string data but you have overridden ToString(), call
GetHashCode () on your own string representation.

// Return a hash code based on the person's ToString() value.
public override int GetHashCode() => ToString().GetHashCode();

Testing Your Modified Person Class

Now that you have overridden the virtual members of Object, update Main() to test your updates.

static void Main(string[] args)

{

Console.WriteLine("***** Fun with System.Object **¥*¥\n");

// NOTE: We want these to be identical to test
// the Equals() and GetHashCode() methods.

Person p1 = new Person("Homer", "Simpson", 50);
Person p2 = new Person("Homer", "Simpson", 50);

252

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

// Get stringified version of objects.
Console.WriteLine("p1.ToString() = {0}", p1.ToString());
Console.WriteLine("p2.ToString() = {0}", p2.ToString());

// Test overridden Equals().
Console.WriteLine("p1 = p2?: {0}", pi1.Equals(p2));

// Test hash codes.
Console.WriteLine("Same hash codes?: {0}", p1l.GetHashCode() == p2.GetHashCode());
Console.Writeline();

// Change age of p2 and test again.

p2.Age = 45;

Console.WriteLine("p1.ToString() = {0}", p1.ToString());
Console.WriteLine("p2.ToString() = {0}", p2.ToString());

Console.WriteLine("p1 = p2?: {0}", pi.Equals(p2));

Console.WriteLine("Same hash codes?: {0}", p1.GetHashCode() == p2.GetHashCode());
Console.ReadLine();

The output is shown here:

HHRIRK Fun with System.Object ok

pl.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
p2.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
pl = p2?: True

Same hash codes?: True

p1.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
p2.ToString() = [First Name: Homer; Last Name: Simpson; Age: 45]
pl = p2?: False

Same hash codes?: False

The Static Members of System.Object

In addition to the instance-level members you have just examined, System.0Object does define two (very
helpful) static members that also test for value-based or reference-based equality. Consider the following
code:

static void StaticMembersOfObject()
{
// Static members of System.Object.
Person p3 = new Person("Sally", "Jones", 4);
Person p4 = new Person("Sally", "Jones", 4);
Console.WriteLine("P3 and P4 have same state: {0}", object.Equals(p3, p4));
Console.WriteLine("P3 and P4 are pointing to same object: {0}",
object.ReferenceEquals(p3, p4));

253

CHAPTER 6 © UNDERSTANDING INHERITANCE AND POLYMORPHISM

Here, you are able to simply send in two objects (of any type) and allow the System.Object class to
determine the details automatically.

Source Code You can find the ObjectOverrides project in the Chapter 6 subdirectory.

Summary

This chapter explored the role and details of inheritance and polymorphism. Over these pages you were
introduced to numerous new keywords and tokens to support each of these techniques. For example, recall
that the colon token is used to establish the parent class of a given type. Parent types are able to define any
number of virtual and/or abstract members to establish a polymorphic interface. Derived types override
such members using the override keyword.

In addition to building numerous class hierarchies, this chapter also examined how to explicitly cast
between base and derived types and wrapped up by diving into the details of the cosmic parent class in the
.NET base class libraries: System.0Object.

254

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 7

Understanding Structured
Exception Handling

In this chapter, you will learn how to handle runtime anomalies in your C# code through the use of
structured exception handling. Not only will you examine the C# keywords that allow you to handle such
matters (try, catch, throw, finally, when), but you will also come to understand the distinction between
application-level and system-level exceptions, as well as the role of the System.Exception base class.
This discussion will lead into the topic of building custom exceptions and, finally, to a quick look at some
exception-centric debugging tools of Visual Studio.

Ode to Errors, Bugs, and Exceptions

Despite what our (sometimes inflated) egos may tell us, no programmer is perfect. Writing software is a
complex undertaking, and given this complexity, it is quite common for even the best software to ship

with various problems. Sometimes the problem is caused by bad code (such as overflowing the bounds

of an array). Other times, a problem is caused by bogus user input that has not been accounted for in the
application’s codebase (e.g., a phone number input field assigned to the value Chucky). Now, regardless of
the cause of the problem, the end result is that the application does not work as expected. To help frame the
upcoming discussion of structured exception handling, allow me to provide definitions for three commonly
used anomaly-centric terms.

e Bugs: These are, simply put, errors made by the programmer. For example, suppose
you are programming with unmanaged C++. If you fail to delete dynamically
allocated memory, resulting in a memory leak, you have a bug.

e Usererrors: User errors, on the other hand, are typically caused by the individual
running your application, rather than by those who created it. For example, an end
user who enters a malformed string into a text box could very well generate an error
ifyou fail to handle this faulty input in your codebase.

e Exceptions: Exceptions are typically regarded as runtime anomalies that are difficult,
if not impossible, to account for while programming your application. Possible
exceptions include attempting to connect to a database that no longer exists,
opening a corrupted XML file, or trying to contact a machine that is currently offline.
In each of these cases, the programmer (or end user) has little control over these
“exceptional” circumstances.

© Andrew Troelsen and Philip Japikse 2017 255
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_7

https://doi.org/10.1007/978-1-4842-3018-3_7

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Given these definitions, it should be clear that .NET structured exception handling is a technique
for dealing with runtime exceptions. However, even for the bugs and user errors that have escaped your
view, the CLR will often generate a corresponding exception that identifies the problem at hand. By way
of a few examples, the .NET base class libraries define numerous exceptions, such as FormatException,
IndexOutOfRangeException, FileNotFoundException, ArgumentOutOfRangeException, and so forth.
Within the .NET nomenclature, an exception accounts for bugs, bogus user input, and runtime errors,
even though programmers may view each of these as a distinct issue. However, before I get too far ahead of
myself, let’s formalize the role of structured exception handling and check out how it differs from traditional
error-handling techniques.

Note To make the code examples used in this book as clean as possible, | will not catch every possible
exception that may be thrown by a given method in the base class libraries. In your production-level projects,
you should, of course, make liberal use of the techniques presented in this chapter.

The Role of .NET Exception Handling

Prior to .NET, error handling under the Windows operating system was a confused mishmash of techniques.
Many programmers rolled their own error-handling logic within the context of a given application. For
example, a development team could define a set of numerical constants that represented known error
conditions and make use of them as method return values. By way of an example, consider the following
partial C code:

/* A very C-style error trapping mechanism. */
#define E_FILENOTFOUND 1000

int UseFileSystem()

{
// Assume something happens in this function
// that causes the following return value.
return E_FILENOTFOUND;

}

void main()
{
int retVal = UseFileSystem();
if(retVal == E_FILENOTFOUND)
printf("Cannot find file...");

This approach is less than ideal, given that the constant E_FILENOTFOUND is little more than a numerical
value and is far from being a helpful agent regarding how to deal with the problem. Ideally, you would like to
wrap the error’s name, a descriptive message, and other helpful information about this error condition into a
single, well-defined package (which is exactly what happens under structured exception handling). In addition
to a developer’s ad hoc techniques, the Windows API defines hundreds of error codes that come by way of
#defines, HRESULTs, and far too many variations on the simple Boolean (bool, BOOL, VARIANT BOOL, and so on).

The obvious problem with these older techniques is the tremendous lack of symmetry. Each approach
is more or less tailored to a given technology, a given language, and perhaps even a given project. To
put an end to this madness, the .NET platform provides a standard technique to send and trap runtime

256

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

errors: structured exception handling. The beauty of this approach is that developers now have a unified
approach to error handling, which is common to all languages targeting the .NET platform. Therefore, the
way in which a C# programmer handles errors is syntactically similar to that of a VB programmer, or a C++
programmer using C++/CLI.

As an added bonus, the syntax used to throw and catch exceptions across assemblies and machine
boundaries is identical. For example, if you use C# to build a Windows Communication Foundation (WCF)
service, you can throw a SOAP fault to a remote caller, using the same keywords that allow you to throw an
exception between methods in the same application.

Another bonus of .NET exceptions is that rather than receiving a cryptic numerical value, exceptions
are objects that contain a human-readable description of the problem, as well as a detailed snapshot of
the call stack that triggered the exception in the first place. Furthermore, you are able to give the end user
help-link information that points the user to a URL that provides details about the error, as well as custom
programmer-defined data.

The Building Blocks of .NET Exception Handling

Programming with structured exception handling involves the use of four interrelated entities.

A class type that represents the details of the exception

e A member that throws an instance of the exception class to the caller under the
correct circumstances

e Ablockof code on the caller’s side that invokes the exception-prone member

e Ablock of code on the caller’s side that will process (or catch) the exception, should
it occur

The C# programming language offers five keywords (try, catch, throw, finally, and when) that allow
you to throw and handle exceptions. The object that represents the problem at hand is a class extending
System.Exception (or a descendent thereof). Given this fact, let’s check out the role of this exception-centric
base class.

The System.Exception Base Class

All exceptions ultimately derive from the System.Exception base class, which in turn derives from
System.Object. Here is the crux of this class (note that some of these members are virtual and may thus be
overridden by derived classes):

public class Exception : ISerializable, Exception
{
// Public constructors
public Exception(string message, Exception innerException);
public Exception(string message);
public Exception();

// Methods

public virtual Exception GetBaseException();

public virtual void GetObjectData(SerializationInfo info,
StreamingContext context);

257

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

// Properties

public virtual IDictionary Data { get; }
public virtual string HelpLink { get; set; }
public Exception InnerException { get; }
public virtual string Message { get; }
public virtual string Source { get; set; }
public virtual string StackTrace { get; }
public MethodBase TargetSite { get; }

As you can see, many of the properties defined by System.Exception are read-only in nature. This
is because derived types will typically supply default values for each property. For example, the default
message of the IndexOutOfRangeException type is “Index was outside the bounds of the array.

Note The Exception class implements two .NET interfaces. Although you have yet to examine interfaces
(see Chapter 8), understand that the Exception interface allows a .NET exception to be processed by an
unmanaged codebase (such as a COM application), while the ISerializable interface allows an exception
object to be persisted across boundaries (such as a machine boundary).

Table 7-1 describes the most important members of System.Exception.

Table 7-1. Core Members of the System.Exception Type

System.Exception Property Meaning in Life

Data

HelpLink

InnerException

Message
Source

StackTrace

TargetSite

This read-only property retrieves a collection of key-value pairs
(represented by an object implementing IDictionary) that provide
additional, programmer-defined information about the exception. By
default, this collection is empty.

This property gets or sets a URL to a help file or web site describing the error
in full detail.

This read-only property can be used to obtain information about the
previous exceptions that caused the current exception to occur. The
previous exceptions are recorded by passing them into the constructor of
the most current exception.

This read-only property returns the textual description of a given error. The
error message itself is set as a constructor parameter.

This property gets or sets the name of the assembly, or the object, that threw
the current exception.

This read-only property contains a string that identifies the sequence of
calls that triggered the exception. As you might guess, this property is useful
during debugging or if you want to dump the error to an external error log.

This read-only property returns a MethodBase object, which describes
numerous details about the method that threw the exception (invoking
ToString() will identify the method by name).

258

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

The Simplest Possible Example

To illustrate the usefulness of structured exception handling, you need to create a class that will throw an
exception under the correct (or one might say exceptional) circumstances. Assume you have created a new C#
Console Application project (named SimpleException) that defines two class types (Car and Radio) associated
by the “has-a” relationship. The Radio type defines a single method that turns the radio’s power on or off.

class Radio

{
public void TurnOn(bool on)
{
Console.WriteLine(on ? "Jamming..." : "Quiet time...");
}
}

In addition to leveraging the Radio class via containment/delegation, the Car class (shown next)
is defined in such a way that if the user accelerates a Car object beyond a predefined maximum speed
(specified using a constant member variable named MaxSpeed), its engine explodes, rendering the Car
unusable (captured by a private bool member variable named carIsDead).

Beyond these points, the Car type has a few properties to represent the current speed and a user
supplied “pet name,” as well as various constructors to set the state of a new Car object. Here is the complete
definition (with code comments):

class Car

{
// Constant for maximum speed.
public const int MaxSpeed = 100;

// Car properties.
public int CurrentSpeed {get; set;} = 0;

public string PetName {get; set;} = "";

// Is the car still operational?
private bool carIsDead;

// A car has-a radio.
private Radio theMusicBox = new Radio();

// Constructors.
public Car() {}
public Car(string name, int speed)
{
CurrentSpeed = speed;
PetName = name;

}

public void CrankTunes(bool state)
{

// Delegate request to inner object.
theMusicBox.TurnOn(state);

}

259

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

sp

st
{

*x
=>
Ja
=>

=>
Zi
Zi

// See if Car has overheated.
public void Accelerate(int delta)
{
if (carIsDead)
Console.WriteLine("{0} is out of order...", PetName);
else
{
CurrentSpeed += delta;
if (CurrentSpeed > MaxSpeed)
{
Console.WriteLine("{0} has overheated!", PetName);
CurrentSpeed = 0;
carIsDead = true;
}
else
Console.WriteLine("=> CurrentSpeed = {0}", CurrentSpeed);

Now, if you implement a Main () method that forces a Car object to exceed the predefined maximum
eed (set to 100, in the Car class) as shown here:

atic void Main(string[] args)

Console.WriteLine("***** Simple Exception Example *#i¥*™");
Console.WriteLine("=> Creating a car and stepping on it!");
Car myCar = new Car("Zippy", 20);

myCar.CrankTunes(true);

for (int i = 0; i < 10; i++)
myCar.Accelerate(10);
Console.ReadlLine();

you would see the following output:

*** Simple Exception Example **i**
Creating a car and stepping on it!
mming. ..

CurrentSpeed = 30

CurrentSpeed = 40

CurrentSpeed = 50

CurrentSpeed = 60

CurrentSpeed = 70

CurrentSpeed = 80

CurrentSpeed = 90

CurrentSpeed = 100

ppy has overheated!

ppy is out of order...

260

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Throwing a General Exception (Updated)

Now that you have a functional Car class, I'll demonstrate the simplest way to throw an exception.
The current implementation of Accelerate() simply displays an error message if the caller attempts to
speed up the Car beyond its upper limit.

To retrofit this method to throw an exception if the user attempts to speed up the automobile after it
has met its maker, you want to create and configure a new instance of the System.Exception class, setting
the value of the read-only Message property via the class constructor. When you want to send the exception
object back to the caller, use the C# throw keyword. Here is the relevant code update to the Accelerate()
method:

// This time, throw an exception if the user speeds up beyond MaxSpeed.
public void Accelerate(int delta)
{
if (carIsDead)
Console.Writeline("{0} is out of order...", PetName);
else
{
CurrentSpeed += delta;
if (CurrentSpeed >= MaxSpeed)
{
carIsDead = true;
CurrentSpeed = 0;

// Use the "throw" keyword to raise an exception.
throw new Exception($"{PetName} has overheated!");
}
else
Console.WriteLine("=> CurrentSpeed = {0}", CurrentSpeed);

Before examining how a caller would catch this exception, let’s look at a few points of interest. First,
when you are throwing an exception, it is always up to you to decide exactly what constitutes the error
in question and when an exception should be thrown. Here, you are making the assumption that if the
program attempts to increase the speed of a Car object beyond the maximum, a System.Exception object
should be thrown to indicate the Accelerate() method cannot continue (which may or may not be a valid
assumption; this will be a judgment call on your part based on the application you are creating).

Alternatively, you could implement Accelerate() to recover automatically without needing to throw an
exception in the first place. By and large, exceptions should be thrown only when a more terminal condition
has been met (for example, not finding a necessary file, failing to connect to a database, and the like).
Deciding exactly what justifies throwing an exception is a design issue you must always contend with. For
the current purposes, assume that asking a doomed automobile to increase its speed is cause to throw an
exception.

261

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

In any case, if you were to rerun the application at this point using the previous logic in Main(), the
exception will eventually be thrown. As shown in the following output, the result of not handling this error is
less than ideal, given you receive a verbose error dump followed by the program’s termination:

*rxxk Simple Exception Example ***
=> Creating a car and stepping on it!
Jamming. ..
=> CurrentSpeed = 30
=> CurrentSpeed = 40
=> CurrentSpeed = 50
=> CurrentSpeed = 60
=> CurrentSpeed = 70
=> CurrentSpeed = 80
=> CurrentSpeed = 90

Unhandled Exception: System.Exception: Zippy has overheated!

at SimpleException.Car.Accelerate(Int32 delta) in C:\MyBooks\C# Book (7th ed)
\Code\Chapter_7\SimpleException\Car.cs:1line 62

at SimpleException.Program.Main(String[] args) in C:\MyBooks\C# Book (7th ed)
\Code\Chapter 7\SimpleException\Program.cs:line 20
Press any key to continue . . .

Prior to C# 7, throw was a statement, which meant you could throw an exception only where statements
are allowed. With C# 7, throw is available as an expression as well and can be called anywhere expressions
are allowed.

Catching Exceptions

Note For those coming to .NET from a Java background, understand that type members are not prototyped
with the set of exceptions they may throw (in other words, .NET does not support checked exceptions). For
better or for worse, you are not required to handle every exception thrown from a given member.

Because the Accelerate() method now throws an exception, the caller needs to be ready to handle the
exception, should it occur. When you are invoking a method that may throw an exception, you make use of
a try/catch block. After you have caught the exception object, you are able to invoke the members of the
exception object to extract the details of the problem.

What you do with this data is largely up to you. You might want to log this information to a report file,
write the data to the Windows event log, e-mail a system administrator, or display the problem to the end
user. Here, you will simply dump the contents to the console window:

// Handle the thrown exception.

static void Main(string[] args)

{
Console.WriteLine("***** Simple Exception Example **¥¥x"):
Console.Writeline("=> Creating a car and stepping on it!");
Car myCar = new Car("Zippy", 20);
myCar.CrankTunes(true);

262

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

// Speed up past the car's max speed to
// trigger the exception.
try
{
for(int 1 = 0; 1 < 10; i++)
myCar. Accelerate(10);
}

catch(Exception e)

{
Console.WritelLine("\n*** Error! ***");
Console.WriteLine("Method: {0}", e.TargetSite);
Console.WriteLine("Message: {0}", e.Message);
Console.WriteLine("Source: {0}", e.Source);

}

// The error has been handled, processing continues with the next statement.
Console.WriteLine("\n***** Qut of exception logic *****");
Console.ReadLine();

In essence, a try block is a section of statements that may throw an exception during execution. If an
exception is detected, the flow of program execution is sent to the appropriate catch block. On the other
hand, if the code within a try block does not trigger an exception, the catch block is skipped entirely, and all
is right with the world. The following output shows a test run of this program:

*xxxx Simple Exception Example ***i*
=> Creating a car and stepping on it!
Jamming. ..

=> CurrentSpeed = 30

=> CurrentSpeed = 40

=> CurrentSpeed = 50

=> CurrentSpeed = 60

=> CurrentSpeed = 70

=> CurrentSpeed = 80

=> CurrentSpeed = 90

*k Error! X

Method: Void Accelerate(Int32)
Message: Zippy has overheated!
Source: SimpleException

*¥¥xxx Qut of exception logic *****

Asyou can see, after an exception has been handled, the application is free to continue on from the
point after the catch block. In some circumstances, a given exception could be critical enough to warrant the
termination of the application. However, in a good number of cases, the logic within the exception handler
will ensure the application can continue on its merry way (although it could be slightly less functional, such
as not being able to connect to a remote data source).

263

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Configuring the State of an Exception

Currently, the System. Exception object configured within the Accelerate () method simply establishes
a value exposed to the Message property (via a constructor parameter). As shown previously in Table 7-1,
however, the Exception class also supplies a number of additional members (TargetSite, StackTrace,
HelpLink, and Data) that can be useful in further qualifying the nature of the problem. To spruce up the
current example, let’s examine further details of these members on a case-by-case basis.

The TargetSite Property

The System.Exception.TargetSite property allows you to determine various details about the method
that threw a given exception. As shown in the previous Main() method, printing the value of TargetSite
will display the return type, name, and parameter types of the method that threw the exception. However,
TargetSite does not return just a vanilla-flavored string but rather a strongly typed System.Reflection.
MethodBase object. This type can be used to gather numerous details regarding the offending method, as
well as the class that defines the offending method. To illustrate, assume the previous catch logic has been
updated as follows:

static void Main(string[] args)

{

// TargetSite actually returns a MethodBase object.

catch(Exception e)

{
Console.WritelLine("\n*** Error! ***");
Console.WriteLine("Member name: {0}", e.TargetSite);
Console.WritelLine("Class defining member: {o0}",

e.TargetSite.DeclaringType);

Console.WriteLine("Member type: {0}", e.TargetSite.MemberType);
Console.WriteLine("Message: {0}", e.Message);
Console.WriteLine("Source: {0}", e.Source);

}

Console.WriteLine("\n***** OQut of exception logic **¥¥*");

Console.ReadlLine();

}

This time, you make use of the MethodBase.DeclaringType property to determine the fully qualified
name of the class that threw the error (SimpleException.Car, in this case) as well as the MemberType
property of the MethodBase object to identify the type of member (such as a property versus a method)
where this exception originated. In this case, the catch logic would display the following:

**k Eyror! kk*

Member name: Void Accelerate(Int32)

Class defining member: SimpleException.Car
Member type: Method

Message: Zippy has overheated!

Source: SimpleException

264

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

The StackTrace Property

The System.Exception.StackTrace property allows you to identify the series of calls that resulted in the
exception. Be aware that you never set the value of StackTrace, as it is established automatically at the time
the exception is created. To illustrate, assume you have once again updated your catch logic.

catch(Exception e)

Console.WriteLine("Stack: {0}", e.StackTrace);

}

If you were to run the program, you would find the following stack trace is printed to the console
(your line numbers and file paths may differ, of course):

Stack: at SimpleException.Car.Accelerate(Int32 delta)
in c:\MyApps\SimpleException\car.cs:1line 65 at SimpleException.Program.Main()
in c:\MyApps\SimpleException\Program.cs:line 21

The string returned from StackTrace documents the sequence of calls that resulted in the throwing
of this exception. Notice how the bottommost line number of this string identifies the first call in the
sequence, while the topmost line number identifies the exact location of the offending member. Clearly, this
information can be quite helpful during the debugging or logging of a given application, as you are able to
“follow the flow” of the error’s origin.

The HelpLink Property

While the TargetSite and StackTrace properties allow programmers to gain an understanding of a given
exception, this information is of little use to the end user. As you have already seen, the System.Exception.
Message property can be used to obtain human-readable information that can be displayed to the current
user. In addition, the HelpLink property can be set to point the user to a specific URL or standard Windows
help file that contains more detailed information.

By default, the value managed by the HelpLink property is an empty string. If you want to fill this
property with a more interesting value, you need to do so before throwing the System.Exception object.
Here are the relevant updates to the Car.Accelerate() method:

public void Accelerate(int delta)
{
if (carIsDead)
Console.WriteLine("{0} is out of order...", PetName);
else
{
CurrentSpeed += delta;
if (CurrentSpeed >= MaxSpeed)
{
carIsDead = true;
CurrentSpeed = 0;

265

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

// We need to call the HelplLink property, thus we need to
// create a local variable before throwing the Exception object.
Exception ex =
new Exception($"{PetName} has overheated!");
ex.HelpLink = "http://www.CarsRUs.com";
throw ex;
}
else
Console.WriteLine("=> CurrentSpeed = {0}", CurrentSpeed);

The catch logic could now be updated to print this help link information as follows:

catch(Exception e)

Console.WritelLine("Help Link: {0}", e.HelpLink);
}

The Data Property

The Data property of System.Exception allows you to fill an exception object with relevant auxiliary
information (such as a timestamp). The Data property returns an object implementing an interface named
IDictionary, defined in the System.Collections namespace. Chapter 8 examines the role of interface-
based programming, as well as the System.Collections namespace. For the time being, just understand
that dictionary collections allow you to create a set of values that are retrieved using a specific key. Observe
the next update to the Car.Accelerate() method:

public void Accelerate(int delta)
{
if (carIsDead)
Console.WritelLine("{0} is out of order...", PetName);
else
{
CurrentSpeed += delta;
if (CurrentSpeed >= MaxSpeed)
{
carIsDead = true;
CurrentSpeed = 0;

// We need to call the HelplLink property, thus we need

// to create a local variable before throwing the Exception object.
Exception ex = new Exception($"{PetName} has overheated!");
ex.HelpLink = "http://www.CarsRUs.com";

// Stuff in custom data regarding the error.
ex.Data.Add("TimeStamp",$"The car exploded at {DateTime.Now}");
ex.Data.Add("Cause", "You have a lead foot.");

throw ex;

266

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

else
Console.WriteLine("=> CurrentSpeed = {0}", CurrentSpeed);

To successfully enumerate over the key-value pairs, you must first make sure to specify a using directive
for the System.Collections namespace since you will use a DictionaryEntry type in the file containing the
class implementing your Main () method.

using System.Collections;

Next, you need to update the catch logic to test that the value returned from the Data property is not
null (the default value). After that, you use the Key and Value properties of the DictionaryEntry type to
print the custom data to the console.

catch (Exception e)

{

Console.WriteLine("\n-> Custom Data:");
foreach (DictionaryEntry de in e.Data)
Console.WriteLine("-> {0}: {1}", de.Key, de.Value);

With this, here’s the final output you'd see:

*xxxx Simple Exception Example ***i*
=> Creating a car and stepping on it!
Jamming. ..

=> CurrentSpeed = 30

=> CurrentSpeed = 40

=> CurrentSpeed = 50

=> CurrentSpeed = 60

=> CurrentSpeed = 70

=> CurrentSpeed = 80

=> CurrentSpeed = 90

*xk Eyroy! ***

Member name: Void Accelerate(Int32)

Class defining member: SimpleException.Car

Member type: Method

Message: Zippy has overheated!

Source: SimpleException

Stack: at SimpleException.Car.Accelerate(Int32 delta)
at SimpleException.Program.Main(String[] args)

Help Link: http://www.CarsRUs.com

-> Custom Data:
-> TimeStamp: The car exploded at 9/12/2015 9:02:12 PM

-> Cause: You have a lead foot.

*rxxX Qut of exception logic *****

267

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

The Data property is useful in that it allows you to pack in custom information regarding the error at
hand, without requiring the building of a new class type to extend the Exception base class. As helpful as
the Data property may be, however, it is still common for .NET developers to build strongly typed exception
classes, which handle custom data using strongly typed properties.

This approach allows the caller to catch a specific exception-derived type, rather than having to dig
into a data collection to obtain additional details. To understand how to do this, you need to examine the
distinction between system-level and application-level exceptions.

Source Code You can find the SimpleException project in the Chapter 7 subdirectory.

System-Level Exceptions (System.SystemException)

The .NET base class libraries define many classes that ultimately derive from System.Exception. For
example, the System namespace defines core exception objects such as ArgumentOutOfRangeException,
IndexOutOfRangeException, StackOverflowException, and so forth. Other namespaces define exceptions
that reflect the behavior of that namespace. For example, System.Drawing.Printing defines printing
exceptions, System. I0 defines input/output-based exceptions, System.Data defines database-centric
exceptions, and so forth.

Exceptions that are thrown by the .NET platform are (appropriately) called system exceptions. These
exceptions are generally regarded as nonrecoverable, fatal errors. System exceptions derive directly from a
base class named System.SystemException, which in turn derives from System. Exception (which derives
from System.Object).

public class SystemException : Exception
{

// Various constructors.

}

Given that the System. SystemException type does not add any additional functionality beyond a set
of custom constructors, you might wonder why SystemException exists in the first place. Simply put, when
an exception type derives from System.SystemException, you are able to determine that the .NET runtime
is the entity that has thrown the exception, rather than the codebase of the executing application. You can
verify this quite simply using the is keyword.

// True! NullReferenceException is-a SystemException.

NullReferenceException nullRefEx = new NullReferenceException();

Console.WritelLine("NullReferenceException is-a SystemException? : {0}",
nullRefEx is SystemException);

Application-Level Exceptions (System.ApplicationException)

Given that all .NET exceptions are class types, you are free to create your own application-specific exceptions.
However, because the System.SystemException base class represents exceptions thrown from the CLR, you
might naturally assume that you should derive your custom exceptions from the System.Exception type. You
could do this, but you could instead derive from the System.ApplicationException class.

268

http://dx.doi.org/10.1007/978-1-4842-3018-3_7

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

public class ApplicationException : Exception

{

// Various constructors.

}

Like SystemException, ApplicationException does not define any additional members beyond a set
of constructors. Functionally, the only purpose of System.ApplicationException is to identify the source
of the error. When you handle an exception deriving from System.ApplicationException, you can assume
the exception was raised by the codebase of the executing application, rather than by the .NET base class
libraries or .NET runtime engine.

Note In practice, few .NET developers build custom exceptions that extend ApplicationException.
Rather, it is more common to simply subclass System.Exception; however, either approach is technically valid.

Building Custom Exceptions, Take 1

While you can always throw instances of System.Exception to signal a runtime error (as shown in the

first example), it is sometimes advantageous to build a strongly typed exception that represents the unique
details of your current problem. For example, assume you want to build a custom exception (named
CarIsDeadException) to represent the error of speeding up a doomed automobile. The first step is to derive
anew class from System.Exception/System.ApplicationException (by convention, all exception classes
end with the Exception suffix; in fact, this is a .NET best practice).

Note Asarule, all custom exception classes should be defined as public classes (recall that the default
access modifier of a non-nested type is internal). The reason is that exceptions are often passed outside of
assembly boundaries and should therefore be accessible to the calling codebase.

Create a new Console Application project named CustomException, and copy the previous Car.cs and
Radio.cs files into your new project using the Project Add Existing Item menu option (for clarity, be sure to
change the namespace that defines the Car and Radio types from SimpleException to CustomException).
Next, add the following class definition:

// This custom exception describes the details of the car-is-dead condition.
// (Remember, you can also simply extend Exception.)
public class CarIsDeadException : ApplicationException

{}

As with any class, you are free to include any number of custom members that can be called within the
catch block of the calling logic. You are also free to override any virtual members defined by your parent
classes. For example, you could implement CarIsDeadException by overriding the virtual Message property.

As well, rather than populating a data dictionary (via the Data property) when throwing the exception,
the constructor allows the sender to pass in a timestamp and reason for the error. Finally, the time stamp
data and cause of the error can be obtained using strongly typed properties.

269

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

public class CarIsDeadException : ApplicationException
{

private string messageDetails = String.Empty;

public DateTime ErrorTimeStamp {get; set;}

public string CauseOfError {get; set;}

public CarIsDeadException(){}
public CarIsDeadException(string message,
string cause, DateTime time)
{
messageDetails = message;
CauseOfError = cause;
ErrorTimeStamp = time;

}

// Override the Exception.Message property.
public override string Message => $"Car Error Message: {messageDetails}";

Here, the CarIsDeadException class maintains a private field (messageDetails) that represents data
regarding the current exception, which can be set using a custom constructor. Throwing this exception from
the Accelerate() method is straightforward. Simply allocate, configure, and throw a CarIsDeadException
type rather than a System.Exception (notice that, in this case, you no longer need to fill the data collection
manually).

// Throw the custom CarIsDeadException.
public void Accelerate(int delta)
{
CarIsDeadException ex =
new CarIsDeadException($"{PetName} has overheated!",
"You have a lead foot", DateTime.Now);
ex.HelpLink = "http://www.CarsRUs.com";
throw ex;

To catch this incoming exception, your catch scope can now be updated to catch a specific
CarIsDeadException type (however, given that CarIsDeadException “is-a” System.Exception, it is still
permissible to catch a System.Exception as well).

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Custom Exceptions **¥¥¥\n");
Car myCar = new Car("Rusty", 90);

try

{
// Trip exception.
myCar.Accelerate(50);

}

270

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

catch (CarIsDeadException e)

{
Console.WritelLine(e.Message);
Console.WritelLine(e.ErrorTimeStamp);
Console.Writeline(e.CauseOfError);

}

Console.ReadlLine();

}

So, now that you understand the basic process of building a custom exception, you might wonder when
you are required to do so. Typically, you only need to create custom exceptions when the error is tightly
bound to the class issuing the error (for example, a custom file-centric class that throws a number of file-
related errors, a Car class that throws a number of car-related errors, a data access object that throws errors
regarding a particular database table, and so forth). In doing so, you provide the caller with the ability to
handle numerous exceptions on a descriptive error-by-error basis.

Building Custom Exceptions, Take 2

The current CarIsDeadException type has overridden the virtual System.Exception.Message property in
order to configure a custom error message and has supplied two custom properties to account for additional
bits of data. In reality, however, you are not required to override the virtual Message property, as you could
simply pass the incoming message to the parent’s constructor as follows:

public class CarIsDeadException : ApplicationException
{

public DateTime ErrorTimeStamp { get; set; }

public string CauseOfError { get; set; }

public CarIsDeadException() { }

// Feed message to parent constructor.

public CarIsDeadException(string message, string cause, DateTime time)
:base(message)

{
CauseOfError = cause;
ErrorTimeStamp = time;

}

}

Notice that this time you have not defined a string variable to represent the message and have
not overridden the Message property. Rather, you are simply passing the parameter to your base class
constructor. With this design, a custom exception class is little more than a uniquely named class deriving
from System.ApplicationException (with additional properties if appropriate), devoid of any base class
overrides.

Don’t be surprised if most (if not all) of your custom exception classes follow this simple pattern. Many
times, the role of a custom exception is not necessarily to provide additional functionality beyond what is
inherited from the base classes but to supply a strongly named type that clearly identifies the nature of the
error so the client can provide different handler logic for different types of exceptions.

271

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Building Custom Exceptions, Take 3

If you want to build a truly prim-and-proper custom exception class, you want to make sure your type
adheres to .NET best practices. Specifically, this requires that your custom exception does the following:

e Derives from Exception/ApplicationException

e Ismarked with the [System.Serializable] attribute

e Defines a default constructor

e Defines a constructor that sets the inherited Message property
e Defines a constructor to handle “inner exceptions”

e Defines a constructor to handle the serialization of your type

Now, based on your current background with .NET, you might have no experience regarding the
role of attributes or object serialization, which is just fine. I'll address these topics later (see Chapter 15
for information on attributes and Chapter 20 for details on serialization services). However, to complete
your examination of building custom exceptions, here is the final iteration of CarIsDeadException, which
accounts for each of these special constructors (the other custom properties and constructors would be as
shown in the example in “Building Custom Exceptions, Take 2”):

[Serializable]
public class CarIsDeadException : ApplicationException
{
public CarIsDeadException() { }
public CarIsDeadException(string message) : base(message) { }
public CarIsDeadException(string message,
System.Exception inner)
: base(message, inner) { }
protected CarIsDeadException(
System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)
: base(info, context) { }
// Any additional custom properties, constructors and data members...

Given that building custom exceptions that adhere to .NET best practices really differ by only their
name, you will be happy to know that Visual Studio provides a code snippet template named Exception
(see Figure 7-1) that will autogenerate a new exception class that adheres to .NET best practices. (Recall
from Chapter 2 that a code snippet can be activated by typing its name, which is exception in this case, and
pressing the Tab key twice.)

272

http://dx.doi.org/10.1007/978-1-4842-3018-3_15
http://dx.doi.org/10.1007/978-1-4842-3018-3_20
http://dx.doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

CarisDeadExceptioncs” + X [€lf=] Radio.cs Program.cs -
{(_‘PmcessMulliple_Ez_coeptions = | *2 Processiult pleExceptions.CarlsDeadException '[." ErrorTimeStamp -
7| E
8 = [rake onel| -
35
36 @ [Take Two!]
s |
55 @ [Take Three!]
78
79 ex
8@ ¥ o[E w axception =1
81 I Extracter Code snippet for exception
2 M Mote: Tab twice to insert the ‘Exception’ snippet.
-
100% -

Figure 7-1. The Exception code snippet template

Source Code You can find the CustomException project in the Chapter 7 subdirectory.

Processing Multiple Exceptions

In its simplest form, a try block has a single catch block. In reality, though, you often run into situations
where the statements within a try block could trigger numerous possible exceptions. Create a new

C# Console Application project named ProcessMultipleExceptions; add the Car.cs, Radio.cs, and
CarIsDeadException.cs files from the previous CustomException example into the new project (via Project
» Add Existing Item); and update your namespace names accordingly.

Now, update the Car’s Accelerate() method to also throw a predefined base class library
ArgumentOutOfRangeException if you pass an invalid parameter (which you can assume is any value less
than zero). Note the constructor of this exception class takes the name of the offending argument as the first
string, followed by a message describing the error.

// Test for invalid argument before proceeding.
public void Accelerate(int delta)

{
if(delta < 0)
throw new

ArgumentOutOfRangeException("delta"”, "Speed must be greater than zero!");

The catch logic could now specifically respond to each type of exception.

static void Main(string[] args)
{

Console.WriteLine("***** Handling Multiple Exceptions **¥¥*\n");
Car myCar = new Car("Rusty", 90);

273

http://dx.doi.org/10.1007/978-1-4842-3018-3_7

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

try
{

// Trip Arg out of range exception.
myCar.Accelerate(-10);

}

catch (CarIsDeadException e)

{

}
catch (ArgumentOutOfRangeException e)

Console.WritelLine(e.Message);

Console.WritelLine(e.Message);

}

Console.ReadlLine();

When you are authoring multiple catch blocks, you must be aware that when an exception is thrown,
it will be processed by the first appropriate catch. To illustrate exactly what the “first appropriate” catch
means, assume you retrofitted the previous logic with an additional catch scope that attempts to handle
all exceptions beyond CarIsDeadException and ArgumentOutOfRangeException by catching a general
System.Exception as follows:

// This code will not compile!

static void Main(string[] args)

{
Console.WritelLine("***** Handling Multiple Exceptions **¥¥*\n");
Car myCar = new Car("Rusty", 90);

try
{

// Trigger an argument out of range exception.
myCar.Accelerate(-10);

}

catch(Exception e)

{

// Process all other exceptions?
Console.WritelLine(e.Message);

}

catch (CarIsDeadException e)

{

Console.WritelLine(e.Message);

}
catch (ArgumentOutOfRangeException e)

Console.WriteLine(e.Message);

}

Console.ReadlLine();

274

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

This exception-handling logic generates compile-time errors. The problem is that the first catch
block can handle anything derived from System.Exception (given the “is-a” relationship), including the
CarIsDeadException and ArgumentOutOfRangeException types. Therefore, the final two catch blocks are
unreachable!

The rule of thumb to keep in mind is to make sure your catch blocks are structured such that the first
catch is the most specific exception (i.e., the most derived type in an exception-type inheritance chain),
leaving the final catch for the most general (i.e., the base class of a given exception inheritance chain, in this
case System.Exception).

Thus, if you want to define a catch block that will handle any errors beyond CarIsDeadException and
ArgumentOutOfRangeException, you could write the following:

// This code compiles just fine.
static void Main(string[] args)
{
Console.WriteLine("***** Handling Multiple Exceptions *****\n");
Car myCar = new Car("Rusty", 90);
try
{
// Trigger an argument out of range exception.
myCar.Accelerate(-10);
}
catch (CarIsDeadException e)
{
Console.Writeline(e.Message);
}
catch (ArgumentOutOfRangeException e)
{
Console.Writeline(e.Message);
}
// This will catch any other exception
// beyond CarIsDeadException or
// ArgumentOutOfRangeException.
catch (Exception e)

Console.Writeline(e.Message);

}

Console.ReadlLine();

Note Where at all possible, always favor catching specific exception classes, rather than a general
System. Exception. Though it might appear to make life simple in the short term (you may think, “Ah! This
catches all the other things I don’t care about.”), in the long term you could end up with strange runtime
crashes, as a more serious error was not directly dealt with in your code. Remember, a final catch block that
deals with System.Exception tends to be very general indeed.

275

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

General catch Statements

C# also supports a “general” catch scope that does not explicitly receive the exception object thrown by a
given member.

// A generic catch.
static void Main(string[] args)
{
Console.WriteLine("***** Handling Multiple Exceptions *¥***\n");
Car myCar = new Car("Rusty", 90);
try
{
myCar.Accelerate(90);
}

catch

{

Console.WriteLine("Something bad happened...");

}

Console.ReadlLine();

Obviously, this is not the most informative way to handle exceptions since you have no way to obtain
meaningful data about the error that occurred (such as the method name, call stack, or custom message).
Nevertheless, C# does allow for such a construct, which can be helpful when you want to handle all errors in
a general fashion.

Rethrowing Exceptions

When you catch an exception, it is permissible for the logic in a try block to rethrow the exception up the
call stack to the previous caller. To do so, simply use the throw keyword within a catch block. This passes
the exception up the chain of calling logic, which can be helpful if your catch block is only able to partially
handle the error at hand.

// Passing the buck.
static void Main(string[] args)

{
try
{
// Speed up car logic...

catch(CarIsDeadException e)

{

// Do any partial processing of this error and pass the buck.
throw;

}

276

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Be aware that in this example code, the ultimate receiver of CarIsDeadException is the CLR because it
is the Main() method rethrowing the exception. Because of this, your end user is presented with a system-
supplied error dialog box. Typically, you would only rethrow a partial handled exception to a caller that has
the ability to handle the incoming exception more gracefully.

Notice as well that you are not explicitly rethrowing the CarIsDeadException object but rather making
use of the throw keyword with no argument. You're not creating a new exception object; you're just
rethrowing the original exception object (with all its original information). Doing so preserves the context of
the original target.

Inner Exceptions

As you might suspect, it is entirely possible to trigger an exception at the time you are handling another
exception. For example, assume you are handling a CarIsDeadException within a particular catch scope
and during the process you attempt to record the stack trace to a file on your C: drive named carErrors.txt
(you must specify you are using the System.I0 namespace to gain access to these I/O-centric types).

catch(CarIsDeadException e)

{
// Attempt to open a file named carErrors.txt on the C drive.
FileStream fs = File.Open(@"C:\carErrors.txt", FileMode.Open);

Now, if the specified file is not located on your C: drive, the call to File.Open() results in a
FileNotFoundException! Later in this book, you will learn all about the System.I0 namespace where you'll
discover how to programmatically determine whether a file exists on the hard drive before attempting to
open the file in the first place (thereby avoiding the exception altogether). However, to stay focused on the
topic of exceptions, assume the exception has been raised.

When you encounter an exception while processing another exception, best practice states that you
should record the new exception object as an “inner exception” within a new object of the same type as the
initial exception. (That was a mouthful!) The reason you need to allocate a new object of the exception being
handled is that the only way to document an inner exception is via a constructor parameter. Consider the
following code:

catch (CarIsDeadException e)

{
try

{

FileStream fs = File.Open(@"C:\carErrors.txt", FileMode.Open);

}...

catch (Exception e2)

// Throw an exception that records the new exception,
// as well as the message of the first exception.
throw new CarIsDeadException(e.Message, e2);
}
}

277

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Notice, in this case, I have passed in the FileNotFoundException object as the second parameter to the
CarIsDeadException constructor. After you have configured this new object, you throw it up the call stack to
the next caller, which in this case would be the Main() method.

Given that there is no “next caller” after Main() to catch the exception, you would be again presented
with an error dialog box. Much like the act of rethrowing an exception, recording inner exceptions is
usually useful only when the caller has the ability to gracefully catch the exception in the first place. If this
is the case, the caller’s catch logic can use the InnerException property to extract the details of the inner
exception object.

The finally Block

A try/catch scope may also define an optional finally block. The purpose of a finally block is to ensure
that a set of code statements will always execute, exception (of any type) or not. To illustrate, assume you
want to always power down the car’s radio before exiting Main(), regardless of any handled exception.

static void Main(string[] args)

{

Console.WriteLine("***** Handling Multiple Exceptions ***¥*\n");
Car myCar = new Car("Rusty", 90);

myCar.CrankTunes(true);

try

{
// Speed up car logic.

catch(CarIsDeadException e)

{

}
catch(ArgumentOutOfRangeException e)

// Process CarIsDeadException.

// Process ArgumentOutOfRangeException.
}

catch(Exception e)

// Process any other Exception.

}

finally

{
// This will always occur. Exception or not.
myCar.CrankTunes(false);

}

Console.ReadlLine();

If you did not include a finally block, the radio would not be turned off if an exception were
encountered (which might or might not be problematic). In a more real-world scenario, when you need to
dispose of objects, close a file, or detach from a database (or whatever), a finally block ensures a location
for proper cleanup.

278

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Exception Filters

C# 6 introduced a new clause that can be placed on a catch scope, via the when keyword. When you add
this clause, you have the ability to ensure that the statements within a catch block are executed only if some
condition in your code holds true. This expression must evaluate to a Boolean (true or false) and can be
obtained by using a simple code statement in the when definition itself or by calling an additional method in
your code. In a nutshell, this approach allows you to add “filters” to your exception logic.

First, assume you have added a few custom properties to your CarIsDeadException.

public class CarIsDeadException : ApplicationException

{
// Custom members for our exception.
public DateTime ErrorTimeStamp { get; set; }
public string CauseOfError { get; set; }
public CarIsDeadException(string message, string cause, DateTime time)
: base(message)
{
CauseOfError = cause;
ErrorTimeStamp = time;
}
}

Also assume the Accelerate() method uses this new constructor when throwing the error.

CarIsDeadException ex =
new CarIsDeadException($"{PetName} has overheated!",
"You have a lead foot", DateTime.Now);

Now, consider the following modified exception logic. Here, I have added a when clause to the
CarIsDeadException handler to ensure the catch block is never executed on a Friday (a contrived example,
but who wants their automobile to break down on the weekend?). Notice that the single Boolean statement
in the when clause must be wrapped in parentheses (also note you are now printing out a new message in
this scope, which will output only when the when condition is true).

catch (CarIsDeadException e) when (e.ErrorTimeStamp.DayOfWeek != DayOfWeek.Friday)
{

// This new line will only print if the when clause evaluates to true.
Console.WriteLine("Catching car is dead!");

Console.WriteLine(e.Message);

}

While the chances are you will simply have a catch clause for a given error under any condition, as you
can see, the new when keyword allows you to get much more granular when responding to runtime errors.

279

CHAPTER 7 © UNDERSTANDING STRUCTURED EXCEPTION HANDLING

Debugging Unhandled Exceptions Using Visual Studio

Do be aware that Visual Studio supplies a number of tools that help you debug unhandled custom
exceptions. Again, assume you have increased the speed of a Car object beyond the maximum but this time
did not bother to wrap your call within a try block.

Car myCar = new Car("Rusty", 90);
myCar.Accelerate(2000);

If you start a debugging session within Visual Studio (using the Debug » Start Debugging menu
selection), Visual Studio automatically breaks at the time the uncaught exception is thrown. Better yet, you
are presented with a window (see Figure 7-2) displaying the value of the Message property.

[T Program.cs -
[ProcessMultipleExceptions -i"‘y ProcessMultipleExceptions.Car vEO Accelerate(int delta) -
// We need to call the HelpLink property, thus we need Y
/! to create a lof i CartsDeadEx lon was unhandied % T
CarIsDeadExcept 36
new CarlsDeagtxc(Anunhandled exception of type ,
"You have 3'lead 'ProcessMuI:.ip!eEatcepl.nons_CarlsDeadExceplion‘ectulred in
ex.HelpLink = "ht] ProcessMultipleExceptions.exe
% throw ex; A :
) 18 Add 1ioe : Rusty has 3 a1
else . : _ Troubleshooting tips:
ongoleMriteline {Get general help for exceptions ~
}
}
v
} Search for more Help Online...
} Exception settings:
[] Break when this exception type is thrown
Actions:
View Detail
y exception detail to the clipboard
Open exception settings -
98 % -

Figure 7-2. Debugging unhandled custom exceptions with Visual Studio

Note If you fail to handle an exception thrown by a method in the .NET base class libraries, the Visual
Studio debugger breaks at the statement that called the offending method.

If you click the View Detail link, you will find the details regarding the state of the object (see Figure 7-3).

280

CHAPTER 7 UNDERSTANDING STRUCTURED EXCEPTION HANDLING

View Detail

Exception details:
[v ProcessMultipleExceptions.CarlsDeadException
CauseOfError
> Data
» ErrorTimeStamp
HelpLink
HResult
InnerException
Message
Source
StackTrace

Attributes
CallingConvention
ContainsGenericParameters
CustomAttributes
DeclaringType

B (/o Accelerste(nt)

{"Rusty has overheated!"} ~
You have a lead foot
{System.Collections.ListDictionarylnternal}
{9/11/2015 8:50:35 PM}
http://www.CarsRUs.com
-2146232832
null
Rusty has overheated!
ProcessMultipleExceptions
at ProcessMultipleExceptions.Car.Accelerate(Int32 delta) in C:\Myt

Public | HideBySig

Standard | HasThis

false

Count=0

{Name = "Car" FullName = "ProcessMultipleExceptions.Car"} bl

Figure 7-3. Viewing exception details

Source Code You can find the ProcessMultipleExceptions project in the Chapter 7 subdirectory.

Summary

In this chapter, you examined the role of structured exception handling. When a method needs to send an
error object to the caller, it will allocate, configure, and throw a specific System.Exception-derived type via
the C# throw keyword. The caller is able to handle any possible incoming exceptions using the C# catch
keyword and an optional finally scope. Since C# 6.0, the ability to create exception filters using the optional
when keyword was added, and C# 7 has expanded the locations from where you can throw exceptions.

When you are creating your own custom exceptions, you ultimately create a class type deriving
from System.ApplicationException, which denotes an exception thrown from the currently executing
application. In contrast, error objects deriving from System. SystemException represent critical (and fatal)
errors thrown by the CLR. Last but not least, this chapter illustrated various tools within Visual Studio that
can be used to create custom exceptions (according to .NET best practices) as well as debug exceptions.

281

http://dx.doi.org/10.1007/978-1-4842-3018-3_7

CHAPTER 8

Working with Interfaces

This chapter builds upon your current understanding of object-oriented development by examining the
topic of interface-based programming. Here you’ll learn how to define and implement interfaces and
come to understand the benefits of building types that support multiple behaviors. Along the way, you
will also examine a number of related topics, such as obtaining interface references, explicit interface
implementation, and the construction of interface hierarchies. You'll also examine a number of standard
interfaces defined within the .NET base class libraries. As you will see, your custom classes and structures
are free to implement these predefined interfaces to support a number of useful behaviors, such as object
cloning, object enumeration, and object sorting.

Understanding Interface Types

To begin this chapter, allow me to provide a formal definition of the interface type. An interface is nothing
more than a named set of abstract members. Recall from Chapter 6 that abstract methods are pure protocol
in that they do not provide a default implementation. The specific members defined by an interface depend
on the exact behavior it is modeling. Said another way, an interface expresses a behavior that a given class
or structure may choose to support. Furthermore, as you will see in this chapter, a class or structure can
support as many interfaces as necessary, thereby supporting (in essence) multiple behaviors.

As you might guess, the .NET base class libraries ship with numerous predefined interface types that
are implemented by various classes and structures. For example, as you will see in Chapter 21, ADO.NET
ships with multiple data providers that allow you to communicate with a particular database management
system. Thus, under ADO.NET, you have numerous connection objects to choose from (SqlConnection,
0leDbConnection, OdbcConnection, etc.). In addition, third-party database vendors (as well as numerous
open source projects) provide .NET libraries to communicate with a wide number of other databases
(MySQL, Oracle, etc.), all of which contain objects implementing these interfaces.

Regardless of the fact that each connection class has a unique name, is defined within a different
namespace, and (in some cases) is bundled within a different assembly, all connection classes implement a
common interface named IDbConnection.

// The IDbConnection interface defines a common
// set of members supported by all connection objects.
public interface IDbConnection : IDisposable
{
// Methods
IDbTransaction BeginTransaction();
IDbTransaction BeginTransaction(IsolationLevel il);
void ChangeDatabase(string databaseName);
void Close();

© Andrew Troelsen and Philip Japikse 2017 283
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_8

https://doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_21

CHAPTER 8 © WORKING WITH INTERFACES

IDbCommand CreateCommand();

void Open();

// Properties

string ConnectionString { get; set;}
int ConnectionTimeout { get; }
string Database { get; }
ConnectionState State { get; }

Note By convention, .NET interfaces are prefixed with a capital letter /. When you are creating your own
custom interfaces, it is considered a best practice to do the same.

Don’t concern yourself with the details of what these members actually do at this point. Simply
understand that the IDbConnection interface defines a set of members that are common to all ADO.NET
connection classes. Given this, you are guaranteed that every connection object supports members such
as Open(), Close(), CreateCommand(), and so forth. Furthermore, given that interface members are always
abstract, each connection object is free to implement these methods in its own unique manner.

As you work through the remainder of this book, you'll be exposed to dozens of interfaces that ship
with the .NET base class libraries. As you will see, these interfaces can be implemented on your own
custom classes and structures to define types that integrate tightly within the framework. As well, once you
understand the usefulness of the interface type, you will certainly find reasons to build your own.

Interface Types vs. Abstract Base Classes

Given your work in Chapter 6, the interface type might seem somewhat similar to an abstract base class.
Recall that when a class is marked as abstract, it may define any number of abstract members to provide
a polymorphic interface to all derived types. However, even when a class does define a set of abstract
members, it is also free to define any number of constructors, field data, nonabstract members (with
implementation), and so on. Interfaces, on the other hand, contain only member definitions.

The polymorphic interface established by an abstract parent class suffers from one major limitation
in that only derived types support the members defined by the abstract parent. However, in larger software
systems, it is common to develop multiple class hierarchies that have no common parent beyond System.
Object. Given that abstract members in an abstract base class apply only to derived types, you have no way
to configure types in different hierarchies to support the same polymorphic interface. By way of example,
assume you have defined the following abstract class:

public abstract class CloneableType

{
// Only derived types can support this
// "polymorphic interface." Classes in other
// hierarchies have no access to this abstract
// member.
public abstract object Clone();

}

Given this definition, only members that extend CloneableType are able to support the Clone()
method. If you create a new set of classes that do not extend this base class, you can’t gain this polymorphic
interface. Also, you might recall that C# does not support multiple inheritance for classes. Therefore, if you
wanted to create a MiniVan that is-a Car and is-a CloneableType, you are unable to do so.

284

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 8 © WORKING WITH INTERFACES

// Nope! Multiple inheritance is not possible in C#
// for classes.

public class MiniVan : Car, CloneableType

{

}

As you might guess, interface types come to the rescue. After an interface has been defined, it can
be implemented by any class or structure, in any hierarchy, and within any namespace or any assembly
(written in any .NET programming language). As you can see, interfaces are highly polymorphic. Consider
the standard .NET interface named ICloneable, defined in the System namespace. This interface defines a
single method named Clone():

public interface ICloneable

{
object Clone();

If you examine the .NET Framework 4.7 SDK documentation, you'll find that a large number
of seemingly unrelated types (System.Array, System.Data.SqlClient.SqlConnection, System.
OperatingSystem, System.String, etc.) all implement this interface. Although these types have no common
parent (other than System.0Object), you can treat them polymorphically via the ICloneable interface type.
For example, if you had a method named CloneMe() that took an ICloneable interface parameter, you
could pass this method any object that implements said interface. Consider the following simple Program
class defined within a Console Application project named ICloneableExample:

class Program

{

static void Main(string[] args)

{
Console.WriteLine("***** A First Look at Interfaces *****\n");
// All of these classes support the ICloneable interface.
string myStr = "Hello";
OperatingSystem unix0S = new OperatingSystem(PlatformID.Unix, new Version());
System.Data.SqlClient.SqlConnection sqlCnn =

new System.Data.SqlClient.SqlConnection();

// Therefore, they can all be passed into a method taking ICloneable.
CloneMe(myStr);
CloneMe(unix0S);
CloneMe(sqlCnn);
Console.ReadLine();

}

private static void CloneMe(ICloneable c)

{
// Clone whatever we get and print out the name.
object theClone = c.Clone();
Console.WriteLine("Your clone is a: {0}",

theClone.GetType().Name);
}
}

285

CHAPTER 8 © WORKING WITH INTERFACES

When you run this application, the class name of each class prints to the console via the GetType()
method you inherit from System.0Object. As explained in Chapter 15, this method (and .NET reflection
services) allows you to understand the composition of any type at runtime. In any case, the output of the
previous program is shown next:

Bkrkk A First Look at Interfaces *****

Your clone is a: String
Your clone is a: OperatingSystem
Your clone is a: SqlConnection

Source Code You can find the ICloneableExample project in the Chapter 8 subdirectory.

Another limitation of abstract base classes is that each derived type must contend with the set of
abstract members and provide an implementation. To see this problem, recall the shapes hierarchy
you defined in Chapter 6. Assume you defined a new abstract method in the Shape base class named
GetNumberOfPoints(), which allows derived types to return the number of points required to render the
shape.

abstract class Shape

{

// Every derived class must now support this method!
public abstract byte GetNumberOfPoints();

}

Clearly, the only class that has any points in the first place is Hexagon. However, with this update,
every derived class (Circle, Hexagon, and ThreeDCircle) must now provide a concrete implementation of
this function, even if it makes no sense to do so. Again, the interface type provides a solution. If you define
an interface that represents the behavior of “having points,” you can simply plug it into the Hexagon type,
leaving Circle and ThreeDCircle untouched.

Defining Custom Interfaces

Now that you better understand the overall role of interface types, let’s see an example of defining

and implementing custom interfaces. To begin, create a new Console Application project named
CustomlInterface. Using the Project » Add Existing Item menu option, insert the file (or files) containing
your shape type definitions (Shapes.cs in the book’s solution code) created in Chapter 6 during the
Shapes example. After you have done so, rename the namespace that defines your shape-centric types to
CustomInterface (simply to avoid having to import namespace definitions in your new project).

namespace CustomInterface

{
}

// Your shape types defined here...

286

http://dx.doi.org/10.1007/978-1-4842-3018-3_15
http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 8 © WORKING WITH INTERFACES

Now, insert a new interface into your project named IPointy using the Project » Add New Item menu
option, as shown in Figure 8-1.

Add New ltem - Custominterface ? X
4 |nstalled Sort by: Default - B Search Installed Templates (Ctrl+E) P~
: cn - :
4 Visual C# Items g] Class Visual C# ltems Type: Visual C# ltems
Code - An empty interface definition
Data ";] Class for U-SQL Visual C# Items
General
b Web C®) Interface Visual C# Items
Windows Forms
WPF Windows Form Visual C# Items
b ASP.NET Core
SQL Server ..:J User Control Visual C# Items
Storm Items
i &
b Online ~|q= | Component Class Visual C# Items
] I (WPF] Visual C#
4 User Control (WPF) isual C# Items
m About Box Visual C# Items
Name: IPointy.cs
Add —| | Cancel

Figure 8-1. Interfaces, like classes, can be defined in any *. cs file

At a syntactic level, an interface is defined using the C# interface keyword. Unlike a class, interfaces
never specify a base class (not even System.0Object; however, as you will see later in this chapter, an
interface can specify base interfaces). Moreover, the members of an interface never specify an access
modifier (as all interface members are implicitly public and abstract). To get the ball rolling, here is a custom
interface defined in C#:

// This interface defines the behavior of "having points."
public interface IPointy
{

// Implicitly public and abstract.

byte GetNumberOfPoints();

}

Remember that when you define interface members, you do not define an implementation scope for
the members in question. Interfaces are pure protocol and, therefore, never define an implementation (that
is up to the supporting class or structure). Hence, the following version of IPointy would result in various
compiler errors:

// Ack! Exroxs abound!
public interface IPointy

{
// Error! Interfaces cannot have data fields!
public int numbOfPoints;

// Error! Interfaces do not have constructors!
public IPointy() { numbOfPoints = 0;}

287

CHAPTER 8 © WORKING WITH INTERFACES

// Error! Interfaces don't provide an implementation of members!
byte GetNumberOfPoints() { return numbOfPoints; }

}

In any case, this initial IPointy interface defines a single method. However, .NET interface types are
also able to define any number of property prototypes. For example, let’s update the IPointy interface to use
aread-only property rather than a traditional accessor method.

// The pointy behavior as a read-only property.
public interface IPointy

{
// A read-write property in an interface would look like:
// retType PropName { get; set; }
//
// while a write-only property in an interface would be:
// retType PropName { set; }
byte Points { get; }

}

Note Interface types can also contain event (see Chapter 10) and indexer (see Chapter 11) definitions.

Interface types are quite useless on their own, as they are nothing more than a named collection of
abstract members. For example, you can’t allocate interface types as you would a class or structure.

// Ack! Illegal to allocate interface types.
static void Main(string[] args)

{
IPointy p = new IPointy(); // Compiler error!

Interfaces do not bring much to the table until they are implemented by a class or structure. Here,
IPointy is an interface that expresses the behavior of “having points.” The idea is simple: some classes in the
shapes hierarchy have points (such as the Hexagon), while others (such as the Circle) do not.

Implementing an Interface

When a class (or structure) chooses to extend its functionality by supporting interfaces, it does so using

a comma-delimited list in the type definition. Be aware that the direct base class must be the first item
listed after the colon operator. When your class type derives directly from System.0Object, you are free to
simply list the interface (or interfaces) supported by the class, as the C# compiler will extend your types
from System.Object if you do not say otherwise. On a related note, given that structures always derive from
System.ValueType (see Chapter 4), simply list each interface directly after the structure definition. Ponder
the following examples:

// This class derives from System.Object and
// implements a single interface.
public class Pencil : IPointy

{...}
288

http://dx.doi.org/10.1007/978-1-4842-3018-3_10
http://dx.doi.org/10.1007/978-1-4842-3018-3_11
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 8 © WORKING WITH INTERFACES

// This class also derives from System.Object
// and implements a single interface.
public class SwitchBlade : object, IPointy

{...}

// This class derives from a custom base class
// and implements a single interface.
public class Fork : Utensil, IPointy

{...}

// This struct implicitly derives from System.ValueType and
// implements two interfaces.
public struct PitchFork : ICloneable, IPointy

{...}

Understand that implementing an interface is an all-or-nothing proposition. The supporting type is
not able to selectively choose which members it will implement. Given that the IPointy interface defines a
single read-only property, this is not too much of a burden. However, if you are implementing an interface
that defines ten members (such as the IDbConnection interface shown earlier), the type is now responsible
for fleshing out the details of all ten abstract members.

For this example, insert a new class type named Triangle that is-a Shape and supports IPointy. Note
that the implementation of the read-only Points property simply returns the correct number of points (3).

// New Shape derived class named Triangle.
class Triangle : Shape, IPointy
{
public Triangle() { }
public Triangle(string name) : base(name) { }
public override void Draw()
{ Console.WritelLine("Drawing {0} the Triangle", PetName); }

// IPointy implementation.
public byte Points
{
get { return 3; }
}
}

Now, update your existing Hexagon type to also support the IPointy interface type.

// Hexagon now implements IPointy.
class Hexagon : Shape, IPointy
{
public Hexagon(){ }
public Hexagon(string name) : base(name){ }
public override void Draw()
{ Console.WritelLine("Drawing {0} the Hexagon", PetName); }

289

CHAPTER 8 © WORKING WITH INTERFACES

// IPointy implementation.
public byte Points
{

get { return 6; }

}

To sum up the story so far, the Visual Studio class diagram shown in Figure 8-2 illustrates IPointy-
compatible classes using the popular “lollipop” notation. Notice again that Circle and ThreeDCircle do not
implement IPointy, as this behavior makes no sense for these particular classes.

{ Shape v

i |
‘ FAY
IPointy A IPOEI‘It}(I
Interf:
ol Hexagon v Circle v
_ Class Class
= Properties SN ape 4 Shape
& Points
IPointy
|
Triangle ¥ ThreeDCircle ¥
Class Class
= Shape =+ Circle

Figure 8-2. The shapes hierarchy, now with interfaces

Note To display or hide interface names in the class designer, right-click the interface icon and select the
Collapse or Expand option.

Invoking Interface Members at the Object Level

Now that you have some classes that support the IPointy interface, the next question is how you interact
with the new functionality. The most straightforward way to interact with functionality supplied by a given
interface is to invoke the members directly from the object level (provided the interface members are not
implemented explicitly; you can find more details later in the section “Explicit Interface Implementation”).
For example, consider the following Main() method:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Interfaces *****\n");
// Call Points property defined by IPointy.
Hexagon hex = new Hexagon();

290

CHAPTER 8 © WORKING WITH INTERFACES

Console.WriteLine("Points: {0}", hex.Points);
Console.Readline();

}

This approach works fine in this particular case, given that you are well aware that the Hexagon type
has implemented the interface in question and, therefore, has a Points property. Other times, however, you
might not be able to determine which interfaces are supported by a given type. For example, suppose you
have an array containing 50 Shape-compatible types, only some of which support IPointy. Obviously, if you
attempt to invoke the Points property on a type that has not implemented IPointy, you would receive an
error. So, how can you dynamically determine whether a class or structure supports the correct interface?

One way to determine at runtime whether a type supports a specific interface is to use an explicit cast.
If the type does not support the requested interface, you receive an InvalidCastException. To handle this
possibility gracefully, use structured exception handling as in the following example:

static void Main(string[] args)
{
// Catch a possible InvalidCastException.
Circle ¢ = new Circle("Lisa");
IPointy itfPt = null;
try
{
itfPt = (IPointy)c;
Console.WritelLine(itfPt.Points);
}
catch (InvalidCastException e)
{

Console.WriteLine(e.Message);

}

Console.ReadlLine();

While you could use try/catch logic and hope for the best, it would be ideal to determine which
interfaces are supported before invoking the interface members in the first place. Let’s see two ways of
doing so.

Obtaining Interface References: The as Keyword

You can determine whether a given type supports an interface by using the as keyword, introduced in
Chapter 6. If the object can be treated as the specified interface, you are returned a reference to the interface
in question. If not, you receive a null reference. Therefore, be sure to check against a null value before
proceeding.

static void Main(string[] args)

{

// Can we treat hex2 as IPointy?
Hexagon hex2 = new Hexagon("Peter");
IPointy itfPt2 = hex2 as IPointy;

291

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 8 © WORKING WITH INTERFACES

if(itfPt2 != null)

Console.WriteLine("Points: {0}", itfPt2.Points);
else

Console.WriteLine("0OPS! Not pointy...");
Console.ReadLine();

}

Notice that when you use the as keyword, you have no need to use try/catch logic; if the reference is
not null, you know you are calling on a valid interface reference.

Obtaining Interface References: The is Keyword (Updated)

You may also check for an implemented interface using the is keyword (also first discussed in Chapter 6).
If the object in question is not compatible with the specified interface, you are returned the value false.
On the other hand, if the type is compatible with the interface in question, you can safely call the members
without needing to use try/catch logic.

To illustrate, assume you have an array of Shape types containing some members that implement
IPointy. Notice how you are able to determine which items in the array support this interface using the is
keyword, as shown in this retrofitted Main() method:

static void Main(string[] args)

{
Console.Writeline("***¥** Fyn with Interfaces ****k\n");
// Make an array of Shapes.
Shape[] myShapes = { new Hexagon(), new Circle(),
new Triangle("Joe"), new Circle("JoJo")} ;
for(int i = 0; i < myShapes.Length; i++)
{
// Recall the Shape base class defines an abstract Draw()
// member, so all shapes know how to draw themselves.
myShapes[i].Draw();
// Who's pointy?
if (myShapes[i] is IPointy ip)
Console.WritelLine("-> Points: {0}", ip.Points);
else
Console.WriteLine("-> {0}\'s not pointy!", myShapes[i].PetName);
Console.Writeline();
}
Console.ReadLine();
}

292

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 8 © WORKING WITH INTERFACES

The output is as follows:

®Rrkk Fun with Interfaces *¥x¥*

Drawing NoName the Hexagon
-> Points: 6

Drawing NoName the Circle
-> NoName's not pointy!

Drawing Joe the Triangle
-> Points: 3

Drawing JoJo the Circle
-> JoJo's not pointy!

Note This example uses the new feature in C# 7 to assign a variable (ip) to the interface instance in
conjunction with checking for a match to the interface type. This is all part of the new pattern matching
capabilities discussed in Chapters 3 and 6.

Interfaces As Parameters

Given that interfaces are valid .NET types, you may construct methods that take interfaces as parameters,
as illustrated by the CloneMe () method earlier in this chapter. For the current example, assume you have
defined another interface named IDraw3D.

// Models the ability to render a type in stunning 3D.
public interface IDraw3D

{
}

void Draw3D();

Next, assume that two of your three shapes (ThreeDCircle and Hexagon) have been configured to
support this new behavior.

// Circle supports IDraw3D.
class ThreeDCircle : Circle, IDraw3D

{

public void Draw3D()
{ Console.WritelLine("Drawing Circle in 3D!"); }
}

293

http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 8 © WORKING WITH INTERFACES

// Hexagon supports IPointy and IDraw3D.
class Hexagon : Shape, IPointy, IDraw3D

{

public void Draw3D()
{ Console.WritelLine("Drawing Hexagon in 3D!"); }

}
Figure 8-3 presents the updated Visual Studio class diagram.
i Shape v |
| Abstract Class
i |
IPointy [AY
1Pointy A IDrawS:D |
rf P
oeice Hexagon ¥ Circle ¥
= = Class Class
= Properties - Shape - Shape
& Points
IPointy ? IDraw3D
IDraw3D A Triangle ¥ ThreeDCircle ¥
Interface Class Class
= Shape =+ Circle
= Methods
@ Draw3D

Figure 8-3. The updated shapes hierarchy

If you now define a method taking an IDraw3D interface as a parameter, you can effectively send in any
object implementing IDraw3D. (If you attempt to pass in a type not supporting the necessary interface, you
receive a compile-time error.) Consider the following method defined within your Program class:

// 1'1l draw anyone supporting IDraw3D.

static void DrawIn3D(IDraw3D itf3d)

{
Console.WriteLine("-> Drawing IDraw3D compatible type");
itf3d.Draw3D();

}

You could now test whether an item in the Shape array supports this new interface and, if so, pass it into
the DrawIn3D() method for processing.

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Interfaces *¥***\n");
Shape[] myShapes = { new Hexagon(), new Circle(),
new Triangle("Joe"), new Circle("JoJo") } ;

294

CHAPTER 8 © WORKING WITH INTERFACES

for(int i = 0; i < myShapes.Length; i++)

{

// Can I draw you in 3D?
if(myShapes[i] is IDraw3D)
DrawIn3D((IDraw3D)myShapes[i]);
}
}

Here is the output of the updated application. Notice that only the Hexagon object prints out in 3D, as
the other members of the Shape array do not implement the IDraw3D interface.

Fkrkk Fun with Interfaces *¥*¥*

Drawing NoName the Hexagon

-> Points: 6

-> Drawing IDraw3D compatible type
Drawing Hexagon in 3D!

Drawing NoName the Circle
-> NoName's not pointy!

Drawing Joe the Triangle
-> Points: 3

Drawing JoJo the Circle
-> JoJo's not pointy!

Interfaces As Return Values

Interfaces can also be used as method return values. For example, you could write a method that takes an
array of Shape objects and returns a reference to the first item that supports IPointy.

// This method returns the first object in the
// array that implements IPointy.
static IPointy FindFirstPointyShape(Shape[] shapes)

{
foreach (Shape s in shapes)
if (s is IPointy ip)
return ip;
}
return null;
}

295

CHAPTER 8 © WORKING WITH INTERFACES

You could interact with this method as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Interfaces *¥***\n");
// Make an array of Shapes.
Shape[] myShapes = { new Hexagon(), new Circle(),
new Triangle("Joe"), new Circle("JoJo")};

/1 Get first pointy item.

// To be safe, you'd want to check firstPointyItem for null before proceeding.
IPointy firstPointyItem = FindFirstPointyShape(myShapes);
Console.WriteLine("The item has {0} points", firstPointyItem.Points);

Arrays of Interface Types

Recall that the same interface can be implemented by numerous types, even if they are not within the
same class hierarchy and do not have a common parent class beyond System.Object. This can yield
some powerful programming constructs. For example, assume you have developed three new class types
within your current project that model kitchen utensils (via Knife and Fork classes) and another modeling
gardening equipment (a la PitchFork). Consider Figure 8-4.

;"‘Shape V
I |
|p0inty FAY ﬁ) |p0|nty
IDraw3D | Fork ¥
L
Hexagon v Circle v Saes
Class Class
- Shape -+ Shape
C? IPointy
PitchFork ¥
IPginty ? IDraw3D S
1 L
Triangle ¥ ThreeDCircle ¥
Class Class :
IPoin
= Shape = Circle ? g
Knife ¥
Class

Figure 8-4. Recall that interfaces can be “plugged into” any type in any part of a class hierarchy

296

CHAPTER 8 © WORKING WITH INTERFACES

If you defined the PitchFork, Fork, and Knife types, you could now define an array of IPointy-
compatible objects. Given that these members all support the same interface, you can iterate through the
array and treat each item as an IPointy-compatible object, regardless of the overall diversity of the class
hierarchies.

static void Main(string[] args)

{

// This array can only contain types that

// implement the IPointy interface.

IPointy[] myPointyObjects = {new Hexagon(), new Knife(),
new Triangle(), new Fork(), new PitchFork()};

foreach(IPointy i in myPointyObjects)
Console.WriteLine("Object has {0} points.", i.Points);
Console.ReadlLine();

Just to highlight the importance of this example, remember this: when you have an array of a given
interface, the array can contain any class or structure that implements that interface.

Implementing Interfaces Using Visual Studio

Although interface-based programming is a powerful technique, implementing interfaces may entail a
healthy amount of typing. Given that interfaces are a named set of abstract members, you are required
to type in the definition and implementation for each interface method on each type that supports the
behavior. Therefore, if you want to support an interface that defines a total of five methods and three
properties, you need to account for all eight members (or else you will receive compiler errors).

As you would hope, Visual Studio supports various tools that make the task of implementing
interfaces less burdensome. By way of a simple test, insert a final class into your current project named
PointyTestClass. When you add an interface such as IPointy (or any interface for that matter) to a class
type, you might have noticed that when you complete typing the interface’s name (or when you position
the mouse cursor on the interface name in the code window), the first letter is underlined (formally termed
a smart tag). When you click the smart tag, you will be presented with a drop-down list that allows you to
implement the interface (see Figure 8-5).

297

CHAPTER 8 © WORKING WITH INTERFACES

rnycstenes = I

[Custominterface '} “4 Custominterface.PointyClassTest 'i -
1 =using System; B
2 using System.Collections.Generic; x
3 using System.Ling;

4 using System.Text;

5 using System.Threading.Tasks;

6

7 =namespace CustomInterface b1
8|1

9y -E class PointyClassTest : IPointy

1€ Implement interface * €3 50535 'PointyClassTest’ does not implement interface member ‘IPainty.Paints®

11 Implement interface explicitly

12 [} {

13 class PointyClassTest : IPointy

public byte Points => throw new NotImplementedException();

}
}

Preview changes

Fix all occurrences in: Document | Project | Selutien

100% ~
e . el

Figure 8-5. Implementing interfaces using Visual Studio

Notice you are presented with two options, the second of which (explicit interface implementation)
will be examined in the next section. For the time being, select the first option, and you'll see that Visual
Studio has generated stub code for you to update (note that the default implementation throws a
System.NotImplementedException, which can obviously be deleted).

namespace CustomInterface

{
class PointyTestClass : IPointy
{
public byte Points
{
get { throw new NotImplementedException(); }
}
}
}

Note Visual Studio also supports extract interface refactoring, available from the Extract Interface option of
the Quick Actions menu. This allows you to pull out a new interface definition from an existing class definition.
For example, you might be halfway through writing a class when it dawns on you that you can generalize the
behavior into an interface (and thereby open up the possibility of alternative implementations).

Source Code You can find the Custominterface project in the Chapter 8 subdirectory.

298

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 8 © WORKING WITH INTERFACES

Explicit Interface Implementation

As shown earlier in this chapter, a class or structure can implement any number of interfaces. Given

this, there is always the possibility you might implement interfaces that contain identical members and,
therefore, have a name clash to contend with. To illustrate various manners in which you can resolve this
issue, create a new Console Application project named InterfaceNameClash. Now design three interfaces
that represent various locations to which an implementing type could render its output.

// Draw image to a form.
public interface IDrawToForm

{

void Draw();

}

// Draw to buffer in memory.
public interface IDrawToMemory

{

void Draw();

}

// Render to the printer.
public interface IDrawToPrinter

{

void Draw();

}

Notice that each interface defines a method named Draw(), with the identical signature (which happen
to be no arguments). If you now want to support each of these interfaces on a single class type named
Octagon, the compiler would allow the following definition:

class Octagon : IDrawToForm, IDrawToMemory, IDrawToPrinter

{
public void Draw()
{
// Shared drawing logic.
Console.WriteLine("Drawing the Octagon...");
}
}

Although the code compiles cleanly, you do have a possible problem. Simply put, providing a single
implementation of the Draw() method does not allow you to take unique courses of action based on which
interface is obtained from an Octagon object. For example, the following code will invoke the same Draw()
method, regardless of which interface you obtain:

static void Main(string[] args)
{
Console.WritelLine("***** Fun with Interface Name Clashes **¥¥¥\n");
// All of these invocations call the
// same Draw() method!
Octagon oct = new Octagon();

299

CHAPTER 8 © WORKING WITH INTERFACES

IDrawToForm itfForm = (IDrawToForm)oct;
itfForm.Draw();

IDrawToPrinter itfPriner = (IDrawToPrinter)oct;
itfPriner.Draw();

IDrawToMemory itfMemory = (IDrawToMemory)oct;
itfMemory.Draw();

Console.Readline();

Clearly, the sort of code required to render the image to a window is quite different from the code
needed to render the image to a networked printer or a region of memory. When you implement several
interfaces that have identical members, you can resolve this sort of name clash using explicit interface
implementation syntax. Consider the following update to the Octagon type:

class Octagon : IDrawToForm, IDrawToMemory, IDrawToPrinter

{
/7 Explicitly bind Draw() implementations

// to a given interface.
void IDrawToForm.Draw()

{

Console.WriteLine("Drawing to form...");

}

void IDrawToMemory.Draw()

{

Console.WriteLine("Drawing to memory...");

}

void IDrawToPrinter.Draw()

{

Console.WriteLine("Drawing to a printer...");

}
}

Asyou can see, when explicitly implementing an interface member, the general pattern breaks down
to this:

returnType InterfaceName.MethodName(params){}

Note that when using this syntax, you do not supply an access modifier; explicitly implemented
members are automatically private. For example, the following is illegal syntax:

// Error! No access modifier!
public void IDrawToForm.Draw()

{
}

Console.WriteLine("Drawing to form...");

300

CHAPTER 8 © WORKING WITH INTERFACES

Because explicitly implemented members are always implicitly private, these members are no longer
available from the object level. In fact, if you were to apply the dot operator to an Octagon type, you would
find that IntelliSense does not show you any of the Draw() members. As expected, you must use explicit
casting to access the required functionality. Here’s an example:

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Interface Name Clashes **¥¥¥\n");
Octagon oct = new Octagon();

// lle now must use casting to access the Draw()
// members.

IDrawToForm itfForm = (IDrawToForm)oct;
itfForm.Draw();

// Shorthand notation if you don't need
// the interface variable for later use.
((IDrawToPrinter)oct).Draw();

// Could also use the "is" keyword.
If (oct is IDrawToMemory dtm)
dtm.Draw();

Console.ReadLine();

While this syntax is quite helpful when you need to resolve name clashes, you can use explicit interface
implementation simply to hide more “advanced” members from the object level. In this way, when the object
user applies the dot operator, the user will see only a subset of the type’s overall functionality. However, those
who require the more advanced behaviors can extract the desired interface via an explicit cast.

Source Code You can find the InterfaceNameClash project in the Chapter 8 subdirectory.

Designing Interface Hierarchies

Interfaces can be arranged in an interface hierarchy. Like a class hierarchy, when an interface extends an
existing interface, it inherits the abstract members defined by the parent (or parents). Of course, unlike class-
based inheritance, derived interfaces never inherit true implementation. Rather, a derived interface simply
extends its own definition with additional abstract members.

Interface hierarchies can be useful when you want to extend the functionality of an existing interface
without breaking existing codebases. To illustrate, create a new Console Application project named
InterfaceHierarchy. Now, let’s design a new set of rendering-centric interfaces such that IDrawable is the
root of the family tree.

public interface IDrawable

{

void Draw();

}

301

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 8 © WORKING WITH INTERFACES

Given that IDrawable defines a basic drawing behavior, you could now create a derived interface that
extends this interface with the ability to render in modified formats. Here’s an example:

public interface IAdvancedDraw : IDrawable

{
void DrawInBoundingBox(int top, int left, int bottom, int right);
void DrawUpsideDown();

}

Given this design, if a class were to implement IAdvancedDraw, it would now be required to implement
every member defined up the chain of inheritance (specifically, the Draw(), DrawInBoundingBox(), and
DrawUpsideDown() methods).

public class BitmapImage : IAdvancedDraw

{
public void Draw()

{

Console.WriteLine("Drawing...");

}

public void DrawInBoundingBox(int top, int left, int bottom, int right)
{

Console.WriteLine("Drawing in a box...");

}

public void DrawUpsideDown()
{

Console.WriteLine("Drawing upside down!");
}
}

Now, when you use the BitmapImage, you are able to invoke each method at the object level (as they are
all public), as well as extract a reference to each supported interface explicitly via casting.

static void Main(string[] args)

{

Console.WriteLine("***** Simple Interface Hierarchy *****");

// Call from object level.

BitmapImage myBitmap = new BitmapImage();
myBitmap.Draw();
myBitmap.DrawInBoundingBox(10, 10, 100, 150);
myBitmap.DrawUpsideDown();

// Get IAdvancedDraw explicitly.
IAdvancedDraw iAdvDraw = myBitmap as IAdvancedDraw;
if(iAdvDraw != null)
iAdvDraw.DrawUpsideDown();
Console.ReadLine();

302

CHAPTER 8 © WORKING WITH INTERFACES

Source Code You can find the InterfaceHierarchy project in the Chapter 8 subdirectory.

Multiple Inheritance with Interface Types

Unlike class types, an interface can extend multiple base interfaces, allowing you to design some powerful
and flexible abstractions. Create a new Console Application project named MIInterfaceHierarchy. Here is
another collection of interfaces that model various rendering and shape abstractions. Notice that the IShape
interface is extending both IDrawable and IPrintable.

// Multiple inheritance for interface types is a-okay.
interface IDrawable

{

void Draw();

}

interface IPrintable

{

void Print();
void Draw(); // <-- Note possible name clash here!

}

// Multiple interface inheritance. OK!
interface IShape : IDrawable, IPrintable

{
int GetNumberOfSides();

}

Figure 8-6 illustrates the current interface hierarchy.

f -
IDrawable ¥ IPrintable ¥
Interface Interface

[i

»

IShape ¥
Interface

- |Drawable

= |Printable

Figure 8-6. Unlike classes, interfaces can extend multiple interface types

303

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 8 © WORKING WITH INTERFACES

At this point, the million-dollar question is, if you have a class supporting IShape, how many methods
will it be required to implement? The answer: it depends. If you want to provide a simple implementation of
the Draw() method, you need to provide only three members, as shown in the following Rectangle type:

class Rectangle : IShape

{
public int GetNumberOfSides()

{ return 4; }

public void Draw()
{ Console.WritelLine("Drawing..."); }

public void Print()
{ Console.Writeline("Printing..."); }

}

If you'd rather have specific implementations for each Draw() method (which in this case would make
the most sense), you can resolve the name clash using explicit interface implementation, as shown in the
following Square type:

class Square : IShape

{

// Using explicit implementation to handle member name clash.
void IPrintable.Draw()

{
// Draw to printer ...
}

void IDrawable.Draw()

{

// Draw to screen ...

public void Print()
{

}

public int GetNumberOfSides()
{ return 4; }
}

// Print .

Ideally, at this point you feel more comfortable with the process of defining and implementing
custom interfaces using the C# syntax. To be honest, interface-based programming can take a while to get
comfortable with, so if you are in fact still scratching your head just a bit, this is a perfectly normal reaction.
Do be aware, however, that interfaces are a fundamental aspect of the .NET Framework. Regardless of
the type of application you are developing (web-based, desktop GUIs, data-access libraries, etc.), working
with interfaces will be part of the process. To summarize the story thus far, remember that interfaces can be
extremely useful in the following cases:

e You have a single hierarchy where only a subset of the derived types supports a
common behavior.

e Youneed to model a common behavior that is found across multiple hierarchies
with no common parent class beyond System.0Object.

304

CHAPTER 8 © WORKING WITH INTERFACES

Now that you have drilled into the specifics of building and implementing custom interfaces, the
remainder of this chapter examines a number of predefined interfaces contained within the .NET base class
libraries. As you will see, you can implement standard .NET interfaces on your custom types to ensure they
integrate into the framework seamlessly.

Source Code You can find the MlinterfaceHierarchy project in the Chapter 8 subdirectory.

The IEnumerable and IEnumerator Interfaces

To begin examining the process of implementing existing .NET interfaces, let’s first look at the role of
IEnumerable and IEnumerator. Recall that C# supports a keyword named foreach that allows you to iterate
over the contents of any array type.

// Iterate over an array of items.
int[] myArrayOfInts = {10, 20, 30, 40};

foreach(int i in myArrayOfInts)
{
Console.Writeline(i);

}

While it might seem that only array types can use this construct, the truth of the matter is any type
supporting a method named GetEnumerator () can be evaluated by the foreach construct. To illustrate,
begin by creating a new Console Application project named CustomEnumerator. Next, add the Car.cs and
Radio.cs files defined in the SimpleException example of Chapter 7 (via the Project » Add Existing Item
menu option).

Note You might want to rename the namespace containing the Car and Radio types to CustomEnumerator
to avoid having to import the CustomException namespace within this new project.

Now, insert a new class named Garage that stores a set of Car objects within a System.Array.

// Garage contains a set of Car objects.
public class Garage

{

private Car[] carArray = new Car[4];

// Fill with some Car objects upon startup.
public Garage()

{
carArray[0] = new Car("Rusty", 30);
carArray[1] = new Car("Clunker", 55);
carArray[2] = new Car("Zippy", 30);
carArray[3] = new Car("Fred", 30);

}

305

http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_7

CHAPTER 8 © WORKING WITH INTERFACES

Ideally, it would be convenient to iterate over the Garage object’s subitems using the foreach construct,
just like an array of data values.

// This seems reasonable ...
public class Program

{

static void Main(string[] args)

{

Console.WriteLine("***** Fun with IEnumerable / IEnumerator **¥¥¥\n");
Garage carlot = new Garage();

// Hand over each car in the collection?
foreach (Car c in carlot)

{

Console.WriteLine("{0} is going {1} MPH",
c.PetName, c.CurrentSpeed);
}

Console.ReadlLine();

Sadly, the compiler informs you that the Garage class does not implement a method named
GetEnumerator (). This method is formalized by the IEnumerable interface, which is found lurking within
the System.Collections namespace.

Note In Chapter 9, you will learn about the role of generics and the System.Collections.Generic
namespace. As you will see, this namespace contains generic versions of IEnumerable/IEnumerator that
provide a more type-safe way to iterate over items.

Classes or structures that support this behavior advertise that they are able to expose contained items to
the caller (in this example, the foreach keyword itself). Here is the definition of this standard .NET interface:

// This interface informs the caller
// that the object's items can be enumerated.
public interface IEnumerable

{
}

IEnumerator GetEnumerator();

Asyou can see, the GetEnumerator () method returns a reference to yet another interface named
System.Collections.IEnumerator. This interface provides the infrastructure to allow the caller to traverse
the internal objects contained by the IEnumerable-compatible container.

// This interface allows the caller to

// obtain a container's items.
public interface IEnumerator

306

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 8 © WORKING WITH INTERFACES

{
bool MoveNext (); // Advance the internal position of the cursor.
object Current { get;} // Get the current item (read-only property).
void Reset (); // Reset the cursor before the first member.

If you want to update the Garage type to support these interfaces, you could take the long road
and implement each method manually. While you are certainly free to provide customized versions of
GetEnumerator (), MoveNext(), Current, and Reset (), there is a simpler way. As the System.Array type
(as well as many other collection classes) already implements IEnumerable and IEnumerator, you
can simply delegate the request to the System.Array as follows (note you will need to import the
System.Collections namespace into your code file):

using System.Collections;
public class Garage : IEnumerable

{

// System.Array already implements IEnumerator!
private Car[] carArray = new Car[4];

public Garage()
{

carArray[0] = new Car("FeeFee", 200);
carArray[1] = new Car("Clunker", 90);
carArray[2] = new Car("Zippy", 30);
carArray[3] = new Car("Fred", 30);

}

public IEnumerator GetEnumerator()

{
// Return the array object's IEnumerator.
return carArray.GetEnumerator();

}

}

After you have updated your Garage type, you can safely use the type within the C# foreach construct.
Furthermore, given that the GetEnumerator () method has been defined publicly, the object user could also
interact with the IEnumerator type.

// Manually work with IEnumerator.

IEnumerator i = carlot.GetEnumerator();

i.MoveNext();

Car myCar = (Car)i.Current;

Console.WriteLine("{0} is going {1} MPH", myCar.PetName, myCar.CurrentSpeed);

However, if you prefer to hide the functionality of IEnumerable from the object level, simply make use of
explicit interface implementation.

307

CHAPTER 8 © WORKING WITH INTERFACES

IEnumerator IEnumerable.GetEnumerator()

{

// Return the array object's IEnumerator.
return carArray.GetEnumerator();

}

By doing so, the casual object user will not find the Garage’s GetEnumerator () method, while the
foreach construct will obtain the interface in the background when necessary.

Source Code You can find the CustomEnumerator project in the Chapter 8 subdirectory.

Building Iterator Methods with the yield Keyword

There’s an alternative way to build types that work with the foreach loop via iterators. Simply put, an iterator
is a member that specifies how a container’s internal items should be returned when processed by foreach.
To illustrate, create a new Console Application project named CustomEnumeratorWithYield and insert the
Car, Radio, and Garage types from the previous example (again, renaming your namespace definitions to the
current project if you like). Now, retrofit the current Garage type as follows:

public class Garage : IEnumerable

{
private Car[] carArray = new Car[4];
// Iterator method.
public IEnumerator GetEnumerator()
{
foreach (Car c in carArray)
{
yield return c;
}
}
}

Notice that this implementation of GetEnumerator () iterates over the subitems using internal foreach
logic and returns each Car to the caller using the yield return syntax. The yield keyword is used to specify
the value (or values) to be returned to the caller’s foreach construct. When the yield return statementis
reached, the current location in the container is stored, and execution is restarted from this location the next
time the iterator is called.

Iterator methods are not required to use the foreach keyword to return its contents. It is also
permissible to define this iterator method as follows:

public IEnumerator GetEnumerator()

{
yield return carArray[o0];
yield return carArray[1];
yield return carArray[2];
yield return carArray[3];
}

308

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 8 © WORKING WITH INTERFACES

In this implementation, notice that the GetEnumerator () method is explicitly returning a new value to
the caller with each pass through. Doing so for this example makes little sense, given that if you were to add
more objects to the carArray member variable, your GetEnumerator () method would now be out of sync.
Nevertheless, this syntax can be useful when you want to return local data from a method for processing by
the foreach syntax.

Using a Local Function (New)

When the GetEnumerator () method is called, the code isn’t executed until the value returned from the
method is iterated. Update the method to the following code so that an exception is thrown on the first line:

public IEnumerator GetEnumerator()
{
//This will not get thrown until MoveNext() is called
throw new Exception("This won't get called");
foreach (Car c in carArray)
{
yield return c;
}
}

If you were to call the function like this and do nothing else, the exception will never be thrown:
IEnumerator carEnumerator = carlot.GetEnumerator();

It’s not until MoveNext () is called that the code will execute and the exception is thrown. Depending on
the needs of your program, that might be perfectly fine. But it might not. Recall from Chapter 4 the C# 7 local
function feature; local functions are private functions inside other functions. One of the main uses for this
new feature is to solve this problem (the other is for async methods, which will be covered in Chapter 19).

Update the method to this:

public IEnumerator GetEnumerator()

{
//This will get thrown immediately

throw new Exception("This will get called");
return actualImplementation();

//this is the private function
IEnumerator actualImplementation()

{

foreach (Car c in carArray)

{

yield return c;

}
}
}

309

http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_19

CHAPTER 8 © WORKING WITH INTERFACES

Building a Named Iterator

It is also interesting to note that the yield keyword can technically be used within any method, regardless
of its name. These methods (which are technically called named iterators) are also unique in that they can
take any number of arguments. When building a named iterator, be aware that the method will return the
IEnumerable interface, rather than the expected IEnumerator-compatible type. To illustrate, you could add
the following method to the Garage type (using a local function to encapsulate the iteration functionality):

public IEnumerable GetTheCars(bool returnReversed)
{

//do some error checking here

return actualImplementation();

IEnumerable actualImplementation()
{
// Return the items in reverse.
if (returnReversed)
{
for (int i = carArray.length; i != 0; i--)
{
yield return carArray[i - 1];
}
}
else
{
// Return the items as placed in the array.
foreach (Car c in carArray)
{
yield return c;
}
}
}
}

Notice that the new method allows the caller to obtain the subitems in sequential order, as well as in
reverse order, if the incoming parameter has the value true. You could now interact with your new method
as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with the Yield Keyword ***¥¥\n");
Garage carlot = new Garage();

// Get items using GetEnumerator().
foreach (Car c in carlot)

{
Console.WriteLine("{0} is going {1} MPH",
c.PetName, c.CurrentSpeed);
}

Console.WriteLine();

310

CHAPTER 8 © WORKING WITH INTERFACES

/1 Get items (in reverse!) using named iterator.
foreach (Car ¢ in carlot.GetTheCars(true))
{
Console.WriteLine("{0} is going {1} MPH",
c.PetName, c.CurrentSpeed);
}

Console.ReadLine();

As you might agree, named iterators are helpful constructs, in that a single custom container can define
multiple ways to request the returned set.

So, to wrap up this look at building enumerable objects, remember that for your custom types to work
with the C# foreach keyword, the container must define a method named GetEnumerator (), which has
been formalized by the IEnumerable interface type. The implementation of this method is typically achieved
by simply delegating it to the internal member that is holding onto the subobjects; however, it is also
possible to use the yield return syntax to provide multiple “named iterator” methods.

Source Code You can find the CustomEnumeratorWithYield project in the Chapter 8 subdirectory.

The ICloneable Interface

As you might recall from Chapter 6, System.0bject defines a method named MemberwiseClone(). This
method is used to obtain a shallow copy of the current object. Object users do not call this method directly,
as it is protected. However, a given object may call this method itself during the cloning process. To illustrate,
create a new Console Application project named CloneablePoint that defines a class named Point.

// A class named Point.
public class Point
{
public int X {get; set;}
public int Y {get; set;}

public Point(int xPos, int yPos) { X = xPos; Y = yPos;}
public Point(){}

// Override Object.ToString().
public override string ToString() => $"X = {X}; Y = {Y}";

Given what you already know about reference types and value types (see Chapter 4), you are aware
that if you assign one reference variable to another, you have two references pointing to the same object in
memory. Thus, the following assignment operation results in two references to the same Point object on the
heap; modifications using either reference affect the same object on the heap:

static void Main(string[] args)

{
Console.WriteLine("****¥* Fun with Object Cloning *¥***\n");
// Two references to same object!
Point p1 = new Point(50, 50);

311

http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_6
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 8 © WORKING WITH INTERFACES

Point p2 = p1;

p2.X = 0;
Console.WriteLine(p1);
Console.WriteLine(p2);
Console.ReadLine();

When you want to give your custom type the ability to return an identical copy of itself to the caller, you
may implement the standard ICloneable interface. As shown at the start of this chapter, this type defines a
single method named Clone().

public interface ICloneable
object Clone();
Obviously, the implementation of the Clone () method varies among your classes. However, the basic
functionality tends to be the same: copy the values of your member variables into a new object instance of

the same type and return it to the user. To illustrate, ponder the following update to the Point class:

// The Point now supports "clone-ability."
public class Point : ICloneable

{
public int X { get; set; }
public int Y { get; set; }
public Point(int xPos, int yPos) { X = xPos; Y = yPos; }
public Point() { }
// Override Object.ToString().
public override string ToString() => $"X = {X}; Y = {V}";
// Return a copy of the current object.
public object Clone() => new Point(this.X, this.Y);
}

In this way, you can create exact stand-alone copies of the Point type, as illustrated by the following
code:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Object Cloning *¥¥*¥<\n");
// Notice Clone() returns a plain object type.
// You must perform an explicit cast to obtain the derived type.
Point p3 = new Point(100, 100);
Point p4 = (Point)p3.Clone();

// Change p4.X (which will not change p3.X).
p4a.X = 0;

312

CHAPTER 8 © WORKING WITH INTERFACES

// Print each object.
Console.WritelLine(p3);
Console.Writeline(p4);
Console.Readline();

While the current implementation of Point fits the bill, you can streamline things just a bit. Because the
Point type does not contain any internal reference type variables, you could simplify the implementation of
the Clone() method as follows:

// Copy each field of the Point member by member.
public object Clone() => this.MemberwiseClone();

Be aware, however, that if the Point did contain any reference type member variables,
MemberwiseClone() would copy the references to those objects (i.e., a shallow copy). If you want to support
a true deep copy, you will need to create a new instance of any reference type variables during the cloning
process. Let’s see an example next.

A More Elaborate Cloning Example

Now assume the Point class contains a reference type member variable of type PointDescription. This
class maintains a point’s friendly name as well as an identification number expressed as a System.Guid (a
globally unique identifier [GUID] is a statistically unique 128-bit number). Here is the implementation:

// This class describes a point.
public class PointDescription

{
public string PetName {get; set;}
public Guid PointID {get; set;}
public PointDescription()
{
PetName = "No-name";
PointID = Guid.NewGuid();
}
}

The initial updates to the Point class itself included modifying ToString() to account for these new
bits of state data, as well as defining and creating the PointDescription reference type. To allow the outside
world to establish a pet name for the Point, you also update the arguments passed into the overloaded
constructor.

public class Point : ICloneable

{
public int X { get; set; }
public int Y { get; set; }
public PointDescription desc = new PointDescription();

313

CHAPTER 8 © WORKING WITH INTERFACES

public Point(int xPos, int yPos, string petName)

{
X = xPos; Y = yPos;
desc.PetName = petName;

public Point(int xPos, int yPos)
{ X = xPos; Y = yPos;

gublic Point() { }

// Override Object.ToString().
public override string ToString()

=> $"X = {X}; Y = {Y}; Name = {desc.PetName};\nID = {desc.PointID}\n";

// Return a copy of the current object.
public object Clone() => this.MemberwiseClone();

Notice that you did not yet update your Clone() method. Therefore, when the object user asks for a

clone using the current implementation, a shallow (member-by-member) copy is achieved. To illustrate,
assume you have updated Main() as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Object Cloning *¥¥*¥\n");
Console.WritelLine("Cloned p3 and stored new Point in p4");
Point p3 = new Point(100, 100, "Jane");

Point p4 = (Point)p3.Clone();

Console.Writeline("Before modification:");
Console.WriteLine("p3: {0}", p3);
Console.WriteLine("p4: {0}", p4);
p4.desc.PetName = "My new Point";

p4a.X = 9;

Console.WritelLine("\nChanged p4.desc.petName and p4.X");
Console.Writeline("After modification:");
Console.WriteLine("p3: {0}", p3);

Console.WritelLine("p4: {0}", p4);

Console.ReadLine();

314

CHAPTER 8 © WORKING WITH INTERFACES

Notice in the following output that while the value types have indeed been changed, the internal
reference types maintain the same values, as they are “pointing” to the same objects in memory (specifically,
note that the pet name for both objects is now “My new Point”).

*¥xx% Fun with Object Cloning *****

Cloned p3 and stored new Point in p4
Before modification:

p3: X = 100; Y = 100; Name = Jane;

ID = 133d66a7-0837-4bd7-95c6-b22ab0434509

p4: X = 100; Y = 100; Name = Jane;
ID = 133d66a7-0837-4bd7-95c6-b22ab0434509

Changed p4.desc.petName and p4.X

After modification:

p3: X = 100; Y = 100; Name = My new Point;
ID = 133d66a7-0837-4bd7-95c6-b22ab0434509

p4: X = 9; Y = 100; Name = My new Point;
ID = 133d66a7-0837-4bd7-95c6-b22ab0434509

To have your Clone() method make a complete deep copy of the internal reference types, you need
to configure the object returned by MemberwiseClone() to account for the current point’s name
(the System.Guid type is in fact a structure, so the numerical data is indeed copied). Here is one possible
implementation:

// Now we need to adjust for the PointDescription member.
public object Clone()
{

// First get a shallow copy.

Point newPoint = (Point)this.MemberwiseClone();

// Then fill in the gaps.

PointDescription currentDesc = new PointDescription();
currentDesc.PetName = this.desc.PetName;
newPoint.desc = currentDesc;

return newPoint;

315

CHAPTER 8 © WORKING WITH INTERFACES

If you rerun the application once again and view the output (shown next), you see that the Point
returned from Clone() does copy its internal reference type member variables (note the pet name is now
unique for both p3 and p4).

#Rxkk Fun with Object Cloning *tk*

Cloned p3 and stored new Point in p4
Before modification:

p3: X = 100; Y = 100; Name = Jane;

ID = 51f64f25-4b0e-47ac-ba35-37d263496406

p4: X = 100; Y = 100; Name = Jane;
ID = 0d3776b3-b159-490d-b022-73f60788e8a

Changed p4.desc.petName and p4.X

After modification:

p3: X = 100; Y = 100; Name = Jane;

ID = 51f64f25-4b0oe-47ac-ba35-37d263496406

p4: X = 9; Y = 100; Name = My new Point;
ID = 0d3776b3-b159-490d-b022-7f3f60788e8a

To summarize the cloning process, if you have a class or structure that contains nothing but value
types, implement your Clone() method using MemberwiseClone(). However, if you have a custom type
that maintains other reference types, you might want to create a new object that takes into account each
reference type member variable in order to get a “deep copy.”

Source Code You can find the CloneablePoint project in the Chapter 8 subdirectory.

The IComparable Interface

The System. IComparable interface specifies a behavior that allows an object to be sorted based on some
specified key. Here is the formal definition:

// This interface allows an object to specify its
// relationship between other like objects.
public interface IComparable

{
}

int CompareTo(object o);

Note The generic version of this interface (IComparable<T>) provides a more type-safe manner to handle
comparisons between objects. You’'ll examine generics in Chapter 9.

316

http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 8 © WORKING WITH INTERFACES

Let’s assume you have a new Console Application project named ComparableCar that updates the Car
class from Chapter 7 as so (notice that you have basically just added a new property to represent a unique ID
for each car and a modified constructor):

public class Car

{

public int CarID {get; set;}
public Car(string name, int currSp, int id)
{
CurrentSpeed = currSp;
PetName = name;
CarID = id;
}

Now assume you have an array of Car objects as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Object Sorting *****\n");

// Make an array of Car objects.

Car[] myAutos = new Car[5];
myAutos[0] = new Car("Rusty", 80, 1);
myAutos[1] = new Car("Mary", 40, 234);

myAutos[2] = new Car("Viper", 40, 34);
myAutos[3] = new Car("Mel", 40, 4);
myAutos[4] = new Car("Chucky", 40, 5);
Console.ReadlLine();

The System.Array class defines a static method named Sort (). When you invoke this method on an
array of intrinsic types (int, short, string, etc.), you are able to sort the items in the array in numeric/
alphabetic order, as these intrinsic data types implement IComparable. However, what if you were to send an
array of Car types into the Sort() method as follows?

// Sort my cars? Not yet!
Array.Sort(myAutos);

If you run this test, you would get a runtime exception, as the Car class does not support the necessary
interface. When you build custom types, you can implement IComparable to allow arrays of your types to be
sorted. When you flesh out the details of CompareTo(), it will be up to you to decide what the baseline of the
ordering operation will be. For the Car type, the internal CarID seems to be the logical candidate.

// The iteration of the Car can be ordered
// based on the CarID.
public class Car : IComparable

{

317

http://dx.doi.org/10.1007/978-1-4842-3018-3_7

CHAPTER 8 © WORKING WITH INTERFACES

// IComparable implementation.
int IComparable.CompareTo(object obj)
{

Car temp = obj as Car;

if (temp != null)

{
if (this.CarID > temp.CarID)
return 1;
if (this.CarID < temp.CarID)
return -1;
else
return 0;
}
else

throw new ArgumentException("Parameter is not a Car!");

As you can see, the logic behind CompareTo() is to test the incoming object against the current instance
based on a specific point of data. The return value of CompareTo() is used to discover whether this type is
less than, greater than, or equal to the object it is being compared with (see Table 8-1).

Table 8-1. CompareTo()Return Values

CompareTo() Return Value Description
Any number less than zero This instance comes before the specified object in the sort order.
Zero This instance is equal to the specified object.

Any number greater than zero This instance comes after the specified object in the sort order.

You can streamline the previous implementation of CompareTo() given that the C# int data type
(which is just a shorthand notation for the CLR System.Int32) implements IComparable. You could
implement the Car’s CompareTo() as follows:

int IComparable.CompareTo(object obj)

{
Car temp = obj as Car;
if (temp != null)
return this.CarID.CompareTo(temp.CarID);
else
throw new ArgumentException("Parameter is not a Car!");
}

In either case, so that your Car type understands how to compare itself to like objects, you can write the
following user code:

// Exercise the IComparable interface.
static void Main(string[] args)

{

// Make an array of Car objects.

318

CHAPTER 8

// Display current array.
Console.Writeline("Here is the unordered set of cars:");
foreach(Car c¢ in myAutos)

Console.WriteLine("{0} {1}", c.CarID, c.PetName);

// Now, sort them using IComparable!
Array.Sort(myAutos);
Console.WritelLine();

// Display sorted array.
Console.WriteLine("Here is the ordered set of cars:");
foreach(Car ¢ in myAutos)

Console.WriteLine("{0} {1}", c.CarID, c.PetName);
Console.ReadlLine();

Here is the output from the previous Main() method:

xxx Fun with Object Sorting ***

Here is the unordered set of cars:
1 Rusty

234 Mary

34 Viper

4 Mel

5 Chucky

Here is the ordered set of cars:
1 Rusty

4 Mel

5 Chucky

34 Viper

234 Mary

Specifying Multiple Sort Orders with IComparer

WORKING WITH INTERFACES

In this version of the Car type, you used the car’s ID as the base for the sort order. Another design might have
used the pet name of the car as the basis for the sorting algorithm (to list cars alphabetically). Now, what if
you wanted to build a Car that could be sorted by ID as well as by pet name? If this is the type of behavior
you are interested in, you need to make friends with another standard interface named IComparer, defined

within the System.Collections namespace as follows:

// A general way to compare two objects.
interface IComparer

{
}

int Compare(object o1, object 02);

319

CHAPTER 8 © WORKING WITH INTERFACES

Note The generic version of this interface (IComparer<T>) provides a more type-safe manner to handle
comparisons between objects. You’ll examine generics in Chapter 9.

Unlike the IComparable interface, IComparer is typically not implemented on the type you are trying to
sort (i.e., the Car). Rather, you implement this interface on any number of helper classes, one for each sort
order (pet name, car ID, etc.). Currently, the Car type already knows how to compare itself against other cars
based on the internal car ID. Therefore, allowing the object user to sort an array of Car objects by pet name
will require an additional helper class that implements IComparer. Here'’s the code (be sure to import the
System.Collections namespace in the code file):

// This helper class is used to sort an array of Cars by pet name.
public class PetNameComparer : IComparer
{

// Test the pet name of each object.

int IComparer.Compare(object o1, object o02)

{

Car t1 = o1 as Car;
Car t2 = 02 as Car;
if(t1 !'= null & t2 != null)
return String.Compare(ti.PetName, t2.PetName);
else
throw new ArgumentException("Parameter is not a Car!");

}

}

The object user code is able to use this helper class. System.Array has a number of overloaded Sort ()
methods, one that just happens to take an object implementing IComparer.

static void Main(string[] args)

{

// Now sort by pet name.

Array.Sort(myAutos, new PetNameComparer());

// Dump sorted array.

Console.WritelLine("Ordering by pet name:");

foreach(Car ¢ in myAutos)

Console.WriteLine("{0} {1}", c.CarID, c.PetName);

}

Custom Properties and Custom Sort Types

It is worth pointing out that you can use a custom static property to help the object user along when
sorting your Car types by a specific data point. Assume the Car class has added a static read-only property
named SortByPetName that returns an instance of an object implementing the IComparer interface
(PetNameComparer, in this case; be sure to import System.Collections).

320

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 8 © WORKING WITH INTERFACES

// We now support a custom property to return
// the correct IComparer interface.
public class Car : IComparable

{

// Property to return the PetNameComparer.
public static IComparer SortByPetName
{ get { return (IComparer)new PetNameComparer(); } }

}

The object user code can now sort by pet name using a strongly associated property, rather than just
“having to know” to use the stand-alone PetNameComparer class type.

// Sorting by pet name made a bit cleaner.
Array.Sort(myAutos, Car.SortByPetName);

Source Code You can find the ComparableCar project in the Chapter 8 subdirectory.

Ideally, at this point you not only understand how to define and implement your own interfaces but also
understand their usefulness. To be sure, interfaces are found within every major .NET namespace, and you
will continue working with various standard interfaces in the remainder of this book.

Summary

An interface can be defined as a named collection of abstract members. Because an interface does not
provide any implementation details, it is common to regard an interface as a behavior that may be supported
by a given type. When two or more classes implement the same interface, you can treat each type the same
way (interface-based polymorphism) even if the types are defined within unique class hierarchies.

C# provides the interface keyword to allow you to define a new interface. As you have seen, a type
can support as many interfaces as necessary using a comma-delimited list. Furthermore, it is permissible to
build interfaces that derive from multiple base interfaces.

In addition to building your custom interfaces, the .NET libraries define a number of standard
(i.e., framework-supplied) interfaces. As you have seen, you are free to build custom types that implement
these predefined interfaces to gain a number of desirable traits such as cloning, sorting, and enumerating.

321

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

PART IV

Advanced C# Programming

CHAPTER 9

Collections and Generics

Any application you create with the .NET platform will need to contend with the issue of maintaining and
manipulating a set of data points in memory. These data points can come from any variety of locations
including a relational database, a local text file, an XML document, a web service call, or perhaps
user-provided input.

When the .NET platform was first released, programmers frequently used the classes of the System.
Collections namespace to store and interact with bits of data used within an application. In .NET 2.0, the
C# programming language was enhanced to support a feature termed generics; and with this change, a new
namespace was introduced in the base class libraries: System.Collections.Generic.

This chapter will provide you with an overview of the various collection (generic and nongeneric)
namespaces and types found within the .NET base class libraries. As you will see, generic containers are
often favored over their nongeneric counterparts because they typically provide greater type safety and
performance benefits. After you've learned how to create and manipulate the generic items found in the
framework, the remainder of this chapter will examine how to build your own generic methods and generic
types. As you do this, you will learn about the role of constraints (and the corresponding C# where keyword),
which allow you to build extremely type-safe classes.

The Motivation for Collection Classes

The most primitive container you could use to hold application data is undoubtedly the array. As you saw
in Chapter 4, C# arrays allow you to define a set of identically typed items (including an array of System.
Objects, which essentially represents an array of any type of data) of a fixed upper limit. Also recall from
Chapter 4 that all C# array variables gather a good deal of functionality from the System.Array class. By
way of a quick review, consider the following Main() method, which creates an array of textual data and
manipulates its contents in various ways:

static void Main(string[] args)
{
// Make an array of string data.
string[] strArray = {"First", "Second", "Third" };

// Show number of items in array using Length property.
Console.WriteLine("This array has {0} items.", strArray.Length);
Console.WritelLine();

© Andrew Troelsen and Philip Japikse 2017 325
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_9

https://doi.org/10.1007/978-1-4842-3018-3_9
http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 9 © COLLECTIONS AND GENERICS

// Display contents using enumerator.
foreach (string s in strArray)

{
Console.WriteLine("Array Entry: {0}", s);
}

Console.WriteLine();

// Reverse the array and print again.
Array.Reverse(strArray);
foreach (string s in strArray)

{
Console.WriteLine("Array Entry: {0}", s);
}

Console.ReadlLine();

}

While basic arrays can be useful to manage small amounts of fixed-size data, there are many other times
where you require a more flexible data structure, such as a dynamically growing and shrinking container or
a container that can hold objects that meet only a specific criteria (e.g., only objects deriving from a specific
base class or only objects implementing a particular interface). When you make use of a simple array, always
remember they are “fixed size” If you make an array of three items, you get only three items; therefore, the
following code would result in a runtime exception (an IndexOutOfRangeException, to be exact):

static void Main(string[] args)
{
// Make an array of string data.
string[] strArray = { "First", "Second", "Third" };

// Try to add a new item at the end?? Runtime error!
strArray[3] = "new item?";

Note Itis actually possible to change the size of an array using the generic Resize()<T> method.
However, this will result in a copy of the data into a new array object and could be inefficient.

To help overcome the limitations of a simple array, the .NET base class libraries ship with a number
of namespaces containing collection classes. Unlike a simple C# array, collection classes are built to
dynamically resize themselves on the fly as you insert or remove items. Moreover, many of the collection
classes offer increased type safety and are highly optimized to process the contained data in a memory-
efficient manner. As you read over this chapter, you will quickly notice that a collection class can belong to
one of two broad categories.

e Nongeneric collections (primarily found in the System.Collections namespace)

e Generic collections (primarily found in the System.Collections.Generic
namespace)

326

CHAPTER 9 * COLLECTIONS AND GENERICS

Nongeneric collections are typically designed to operate on System.0Object types and are, therefore,
loosely typed containers (however, some nongeneric collections do operate only on a specific type of data,
such as string objects). In contrast, generic collections are much more type-safe, given that you must
specify the “type of type” they contain upon creation. As you will see, the telltale sign of any generic item is
the “type parameter” marked with angled brackets (for example, List<T>). You will examine the details of
generics (including the many benefits they provide) a bit later in this chapter. For now, let’s examine some
of the key nongeneric collection types in the System.Collections and System.Collections.Specialized
namespaces.

The System.Collections Namespace

When the .NET platform was first released, programmers frequently used the nongeneric collection
classes found within the System.Collections namespace, which contains a set of classes used to manage
and organize large amounts of in-memory data. Table 9-1 documents some of the more commonly used
collection classes of this namespace and the core interfaces they implement.

Table 9-1. Useful Types of System.Collections

System.Collections Class Meaning in Life Key Implemented Interfaces
Arraylist Represents a dynamically sized collection ~ IList, ICollection,
of objects listed in sequential order IEnumerable, and
ICloneable
BitArray Manages a compact array of bit values, ICollection, IEnumerable,

which are represented as Booleans, where ~ and ICloneable
true indicates that the bit is on (1) and false
indicates the bit is off (0)

Hashtable Represents a collection of key-value pairs IDictionary, ICollection,
that are organized based on the hash code =~ IEnumerable, and
of the key ICloneable

Queue Represents a standard first-in, first-out ICollection, IEnumerable,
(FIFO) collection of objects and ICloneable

SortedList Represents a collection of key-value IDictionary, ICollection,
pairs that are sorted by the keys and are IEnumerable, and
accessible by key and by index ICloneable

Stack Alast-in, first-out (LIFO) stack providing ICollection, IEnumerable,
push and pop (and peek) functionality and ICloneable

The interfaces implemented by these collection classes provide huge insights into their overall
functionality. Table 9-2 documents the overall nature of these key interfaces, some of which you worked with
firsthand in Chapter 8.

327

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 9 © COLLECTIONS AND GENERICS

Table 9-2. Key Interfaces Supported by Classes of System.Collections

System.Collections Interface ~ Meaning in Life

ICollection Defines general characteristics (e.g., size, enumeration, and thread
safety) for all nongeneric collection types

ICloneable Allows the implementing object to return a copy of itself to the caller

IDictionary Allows a nongeneric collection object to represent its contents using
key-value pairs

IEnumerable Returns an object implementing the IEnumerator interface
(see next table entry)

IEnumerator Enables foreach-style iteration of collection items

IList Provides behavior to add, remove, and index items in a sequential

list of objects

An lllustrative Example: Working with the ArrayList

Based on your experience, you might have some firsthand experience using (or implementing) some of
these classic data structures such as stacks, queues, and lists. If this is not the case, I'll provide some further
details on their differences when you examine their generic counterparts a bit later in this chapter. Until
then, here is aMain() method making use of an ArraylList object. Notice that you can add (or remove) items
on the fly and the container automatically resizes itself accordingly.

// You must import System.Collections to access the Arraylist.
static void Main(string[] args)
{

Arraylist strArray = new Arraylist();

strArray.AddRange(new string[] { "First", "Second", "Third" });

// Show number of items in Arraylist.
Console.WriteLine("This collection has {0} items.", strArray.Count);
Console.WritelLine();

// Add a new item and display current count.
strArray.Add("Fourth!");
Console.WriteLine("This collection has {0} items.", strArray.Count);

// Display contents.
foreach (string s in strArray)

{
Console.WritelLine("Entry: {0}", s);
}

Console.WritelLine();

As you would guess, the ArraylList class has many useful members beyond the Count property and
AddRange() and Add() methods, so be sure you consult the .NET Framework documentation for full
details. On a related note, the other classes of System.Collections (Stack, Queue, and so on) are also fully
documented in the .NET help system.

328

CHAPTER 9 * COLLECTIONS AND GENERICS

However, it is important to point out that a majority of your .NET projects will most likely not make
use of the collection classes in the System.Collections namespace! To be sure, these days it is far more
common to make use of the generic counterpart classes found in the System.Collections.Generic
namespace. Given this point, I won’t comment on (or provide code examples for) the remaining nongeneric
classes found in System.Collections.

A Survey of System.Collections.Specialized Namespace

System.Collections is not the only .NET namespace that contains nongeneric collection classes. The
System.Collections.Specialized namespace defines a number of (pardon the redundancy) specialized
collection types. Table 9-3 documents some of the more useful types in this particular collection-centric
namespace, all of which are nongeneric.

Table 9-3. Useful Classes of System.Collections.Specialized

System.Collections.Specialized Type = Meaning in Life

HybridDictionary This class implements IDictionary by using a
ListDictionary while the collection is small and then
switching to a Hashtable when the collection gets large.

ListDictionary This class is useful when you need to manage a small
number of items (ten or so) that can change over time. This
class makes use of a singly linked list to maintain its data.

StringCollection This class provides an optimal way to manage large
collections of string data.

BitVector32 This class provides a simple structure that stores Boolean
values and small integers in 32 bits of memory.

Beyond these concrete class types, this namespace also contains many additional interfaces and
abstract base classes that you can use as a starting point for creating custom collection classes. While these
“specialized” types might be just what your projects require in some situations, I won’t comment on their
usage here. Again, in many cases, you will likely find that the System.Collections.Generic namespace
provides classes with similar functionality and additional benefits.

Note There are two additional collection-centric namespaces (System.Collections.0ObjectModel and
System.Collections.Concurrent) in the .NET base class libraries. You will examine the former namespace
later in this chapter, after you are comfortable with the topic of generics. System.Collections.Concurrent
provides collection classes well-suited to a multithreaded environment (see Chapter 19 for information on
multithreading).

329

http://dx.doi.org/10.1007/978-1-4842-3018-3_19

CHAPTER 9 © COLLECTIONS AND GENERICS

The Problems of Nongeneric Collections

While it is true that many successful .NET applications have been built over the years using these nongeneric
collection classes (and interfaces), history has shown that use of these types can result in a number of issues.

The first issue is that using the System.Collections and System.Collections.Specialized classes can
result in some poorly performing code, especially when you are manipulating numerical data (e.g., value
types). As you'll see momentarily, the CLR must perform a number of memory transfer operations when you
store structures in any nongeneric collection class prototyped to operate on System.0Objects, which can hurt
runtime execution speed.

The second issue is that most of the nongeneric collection classes are not type-safe because (again)
they were developed to operate on System.0Objects, and they could therefore contain anything at all. If
a .NET developer needed to create a highly type-safe collection (e.g., a container that can hold objects
implementing only a certain interface), the only real choice was to create a new collection class by hand.
Doing so was not too labor intensive, but it was a tad on the tedious side.

Before you look at how to use generics in your programs, you'll find it helpful to examine the issues
of nongeneric collection classes a bit closer; this will help you better understand the problems generics
intended to solve in the first place. If you want to follow along, create a new Console Application project
named IssuesWithNonGenericCollections. Next, make sure you import the System.Collections namespace
to the top of your C# code file.

using System.Collections;

The Issue of Performance

As you might recall from Chapter 4, the .NET platform supports two broad categories of data: value types
and reference types. Given that .NET defines two major categories of types, you might occasionally need
to represent a variable of one category as a variable of the other category. To do so, C# provides a simple
mechanism, termed boxing, to store the data in a value type within a reference variable. Assume that you
have created a local variable of type int in a method called SimpleBoxUnboxOperation().If, during the
course of your application, you were to represent this value type as a reference type, you would box the
value, as follows:

static void SimpleBoxUnboxOperation()
{
// Make a ValueType (int) variable.
int myInt = 25;

// Box the int into an object reference.
object boxedInt = myInt;

Boxing can be formally defined as the process of explicitly assigning a value type to a System.Object
variable. When you box a value, the CLR allocates a new object on the heap and copies the value type’s value
(25, in this case) into that instance. What is returned to you is a reference to the newly allocated heap-based
object.

The opposite operation is also permitted through unboxing. Unboxing is the process of converting the
value held in the object reference back into a corresponding value type on the stack. Syntactically speaking,
an unboxing operation looks like a normal casting operation. However, the semantics are quite different.
The CLR begins by verifying that the receiving data type is equivalent to the boxed type, and if so, it copies

330

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 9 * COLLECTIONS AND GENERICS

the value back into a local stack-based variable. For example, the following unboxing operations work
successfully, given that the underlying type of the boxedInt is indeed an int:

static void SimpleBoxUnboxOperation()
{
// Make a ValueType (int) variable.
int myInt = 25;

// Box the int into an object reference.
object boxedInt = myInt;

// Unbox the reference back into a corresponding int.
int unboxedInt = (int)boxedInt;

When the C# compiler encounters boxing/unboxing syntax, it emits CIL code that contains the
box/unbox op codes. If you were to examine your compiled assembly using ildasm.exe, you would find the
following:

.method private hidebysig static void SimpleBoxUnboxOperation() cil managed
{
// Code size 19 (0x13)
.maxstack 1
.locals init ([0] int32 myInt, [1] object boxedInt, [2] int32 unboxedInt)
IL_0000: nop
IL 0001: ldc.i4.s 25
IL_0003: stloc.0
IL_0004: ldloc.o
IL_0005: box [mscorlib]System.Int32
IL_oo00a: stloc.1
IL_ooob: ldloc.1
IL_000c: unbox.any [mscorlib]System.Int32
IL_0011: stloc.2
IL_0012: ret
} // end of method Program::SimpleBoxUnboxOperation

Remember that unlike when performing a typical cast, you must unbox into an appropriate data type.
If you attempt to unbox a piece of data into the incorrect data type, an InvalidCastException exception
will be thrown. To be perfectly safe, you should wrap each unboxing operation in try/catch logic; however,
this would be quite labor intensive to do for every unboxing operation. Consider the following code update,
which will throw an error because you're attempting to unbox the boxed int into a long:

static void SimpleBoxUnboxOperation()

{
// Make a ValueType (int) variable.

int myInt = 25;

// Box the int into an object reference.
object boxedInt = myInt;

331

CHAPTER 9 © COLLECTIONS AND GENERICS

// Unbox in the wrong data type to trigger
// runtime exception.

try
{
long unboxedInt = (long)boxedInt;
}
catch (InvalidCastException ex)
{
Console.WritelLine(ex.Message);
}
}

At first glance, boxing/unboxing might seem like a rather uneventful language feature that is more
academic than practical. After all, you will seldom need to store a local value type in a local object variable,
as shown here. However, it turns out that the boxing/unboxing process is quite helpful because it allows you
to assume everything can be treated as a System.Object, while the CLR takes care of the memory-related
details on your behalf.

Let’s look at a practical use of these techniques. Assume you have created a nongeneric System.
Collections.ArraylList to hold onto a batch of numeric (stack-allocated) data. If you were to examine
the members of ArrayList, you would find they are prototyped to operate on System.Object data. Now
consider the Add(), Insert(), and Remove () methods, as well as the class indexer.

public class ArraylList : object,
IList, ICollection, IEnumerable, ICloneable
{

public virtual int Add(object value);

public virtual void Insert(int index, object value);
public virtual void Remove(object obj);

public virtual object this[int index] {get; set; }

Arraylist has been built to operate on objects, which represent data allocated on the heap, so it might
seem strange that the following code compiles and executes without throwing an error:

static void WorkWithArrayList()

{
// Value types are automatically boxed when
// passed to a method requesting an object.
Arraylist myInts = new Arraylist();
myInts.Add(10);
myInts.Add(20);
myInts.Add(35);

Although you pass in numerical data directly into methods requiring an object, the runtime
automatically boxes the stack-based data on your behalf. Later, if you want to retrieve an item from the
Arraylist using the type indexer, you must unbox the heap-allocated object into a stack-allocated integer
using a casting operation. Remember that the indexer of the ArraylList is returning System.Objects, not
System.Int32s.

332

CHAPTER 9 * COLLECTIONS AND GENERICS

static void WorkWithArraylList()

{
// Value types are automatically boxed when
// passed to a member requesting an object.
Arraylist myInts = new Arraylist();
myInts.Add(10);
myInts.Add(20);
myInts.Add(35);

// Unboxing occurs when an object is converted back to
/! stack-based data.
int 1 = (int)myInts[o];

// Now it is reboxed, as lWiriteline() requires object types!
Console.WriteLine("Value of your int: {o}", i);

Again, note that the stack-allocated System. Int32 is boxed prior to the call to ArrayList.Add(), so
it can be passed in the required System.0Object. Also note that the System.0Object is unboxed back into a
System.Int32 once itis retrieved from the ArraylList via the casting operation, only to be boxed again when
itis passed to the Console.WritelLine() method, as this method is operating on System.0Object variables.

Boxing and unboxing are convenient from a programmer’s viewpoint, but this simplified approach to
stack/heap memory transfer comes with the baggage of performance issues (in both speed of execution and
code size) and a lack of type safety. To understand the performance issues, ponder these steps that must
occur to box and unbox a simple integer:

1. Anew object must be allocated on the managed heap.
2. The value of the stack-based data must be transferred into that memory location.

3. When unboxed, the value stored on the heap-based object must be transferred
back to the stack.

4. The now unused object on the heap will (eventually) be garbage collected.

Although this particular WorkWithArrayList() method won’t cause a major bottleneck in terms of
performance, you could certainly feel the impact if an ArraylList contained thousands of integers that your
program manipulates on a somewhat regular basis. In an ideal world, you could manipulate stack-based
data in a container without any performance issues. Ideally, it would be nice if you did not have to bother
plucking data from this container using try/catch scopes (this is exactly what generics let you achieve).

The Issue of Type Safety

Itouched on the issue of type safety when covering unboxing operations. Recall that you must unbox your
data into the same data type it was declared as before boxing. However, there is another aspect of type safety
you must keep in mind in a generic-free world: the fact that a majority of the classes of System.Collections
can typically hold anything whatsoever because their members are prototyped to operate on System.Objects.
For example, this method builds an ArraylList of random bits of unrelated data:

static void ArraylListOfRandomObjects()

{
// The Arraylist can hold anything at all.

Arraylist allMyObjects = new Arraylist();
allMyObjects.Add(true);

333

CHAPTER 9 © COLLECTIONS AND GENERICS

allMyObjects.Add(new OperatingSystem(PlatformID.MacOSX, new Version(10, 0)));
allMyObjects.Add(66);
allMyObjects.Add(3.14);

In some cases, you will require an extremely flexible container that can hold literally anything (as shown
here). However, most of the time you desire a fype-safe container that can operate only on a particular type
of data point. For example, you might need a container that can hold only database connections, bitmaps, or
IPointy-compatible objects.

Prior to generics, the only way you could address this issue of type safety was to create a custom
(strongly typed) collection class manually. Assume you want to create a custom collection that can contain
only objects of type Person.

public class Person

{
public int Age {get; set;}
public string FirstName {get; set;}
public string LastName {get; set;}

public Person(){}
public Person(string firstName, string lastName, int age)
{

Age = age;

FirstName = firstName;

LastName = lastName;

}
public override string ToString()
{
return $"Name: {FirstName} {LastName}, Age: {Age}";
}
}

To build a collection that can hold only Person objects, you could define a System.Collections.ArraylList
member variable within a class named PersonCollection and configure all members to operate on strongly
typed Person objects, rather than on System.Object types. Here is a simple example
(a production-level custom collection could support many additional members and might extend an
abstract base class from the System.Collections or System.Collections.Specialized namespace):

public class PersonCollection : IEnumerable

{

private Arraylist arPeople = new Arraylist();

// Cast for caller.
public Person GetPerson(int pos) => (Person)arPeople[pos];

// Insert only Person objects.
public void AddPerson(Person p)
{ arPeople.Add(p); }

public void ClearPeople()
{ arPeople.Clear(); }

334

CHAPTER 9 * COLLECTIONS AND GENERICS

public int Count => arPeople.Count;

// Foreach enumeration support.
IEnumerator IEnumerable.GetEnumerator() => arPeople.GetEnumerator();

}

Notice that the PersonCollection class implements the IEnumerable interface, which allows a
foreach-like iteration over each contained item. Also notice that your GetPerson() and AddPerson()
methods have been prototyped to operate only on Person objects, not bitmaps, strings, database
connections, or other items. With these types defined, you are now assured of type safety, given that the C#
compiler will be able to determine any attempt to insert an incompatible data type.

static void UsePersonCollection()

{
Console.WritelLine("***** Custom Person Collection ***¥*\n");
PersonCollection myPeople = new PersonCollection();
myPeople.AddPerson(new Person("Homer", "Simpson", 40));
myPeople.AddPerson(new Person("Marge", "Simpson", 38));
myPeople.AddPerson(new Person(“Lisa", "Simpson", 9));
myPeople.AddPerson(new Person("Bart", "Simpson", 7));
myPeople.AddPerson(new Person("Maggie", "Simpson", 2));

// This would be a compile-time error!
// myPeople.AddPerson(new Car());

foreach (Person p in myPeople)
Console.WritelLine(p);

While custom collections do ensure type safety, this approach leaves you in a position where you must
create an (almost identical) custom collection for each unique data type you want to contain. Thus, if you
need a custom collection that can operate only on classes deriving from the Car base class, you need to build
a highly similar collection class.

public class CarCollection : IEnumerable

{

private ArraylList arCars = new Arraylist();

// Cast for caller.
public Car GetCar(int pos) => (Car) arCars[pos];

// Insert only Car objects.

public void AddCar(Car c)
{ arCars.Add(c); }

public void ClearCars()
{ arCars.Clear(); }

public int Count => arCars.Count;

// Foreach enumeration support.
IEnumerator IEnumerable.GetEnumerator() => arCars.GetEnumerator();

335

CHAPTER 9 © COLLECTIONS AND GENERICS

However, a custom collection class does nothing to solve the issue of boxing/unboxing penalties.
Even if you were to create a custom collection named IntCollection that you designed to operate only on
System.Int32 items, you would have to allocate some type of object to hold the data (e.g., System.Array and
Arraylist).

public class IntCollection : IEnumerable

{

private ArraylList arInts = new ArraylList();

// Get an int (performs unboxing!).
public int GetInt(int pos) => (int)arInts[pos];

// Insert an int (performs boxing)!
public void AddInt(int 1)
{ arInts.Add(i); }

public void ClearInts()
{ arInts.Clear(); }

public int Count => arInts.Count;}

IEnumerator IEnumerable.GetEnumerator() => arInts.GetEnumerator();

Regardless of which type you might choose to hold the integers, you cannot escape the boxing dilemma
using nongeneric containers.

A First Look at Generic Collections

When you use generic collection classes, you rectify all the previous issues, including boxing/unboxing
penalties and a lack of type safety. Also, the need to build a custom (generic) collection class becomes quite
rare. Rather than having to build unique classes that can contain people, cars, and integers, you can use a
generic collection class and specify the type of type.

Consider the following method, which uses the generic List<T> class (in the System.Collections.Generic
namespace) to contain various types of data in a strongly typed manner (don'’t fret the details of generic
syntax at this time):

static void UseGenericlist()

{

Console.WriteLine("***** Fun with Generics *****\n");

// This List<¢> can hold only Person objects.
List<Person> morePeople = new List<Person>();
morePeople.Add(new Person ("Frank", "Black", 50));
Console.WritelLine(morePeople[0]);

// This List<¢> can hold only integers.
List<int> morelInts = new List<int>();
moreInts.Add(10);

moreInts.Add(2);

int sum = moreInts[0] + moreInts[1];

336

CHAPTER 9 * COLLECTIONS AND GENERICS

// Compile-time error! Can't add Person object
/1 to a list of ints!
// moreInts.Add(new Person());

}

The first List<T> object can contain only Person objects. Therefore, you do not need to perform a
cast when plucking the items from the container, which makes this approach more type-safe. The second
List<T> can contain only integers, all of which are allocated on the stack; in other words, there is no hidden
boxing or unboxing as you found with the nongeneric ArraylList. Here is a short list of the benefits generic
containers provide over their nongeneric counterparts:

e Generics provide better performance because they do not result in boxing or
unboxing penalties when storing value types.

e Generics are type safe because they can contain only the type of type you specify.

e Generics greatly reduce the need to build custom collection types because you
specify the “type of type” when creating the generic container.

Source Code You can find the IssuesWithNonGenericCollections project in the Chapter 9 subdirectory.

The Role of Generic Type Parameters

You can find generic classes, interfaces, structures, and delegates throughout the .NET base class libraries,
and these might be part of any .NET namespace. Also be aware that generics have far more uses than simply
defining a collection class. To be sure, you will see many different generics used in the remainder of this
book for various reasons.

Note Only classes, structures, interfaces, and delegates can be written generically; enum types cannot.

When you see a generic item listed in the .NET Framework documentation or the Visual Studio Object
Browser, you will notice a pair of angled brackets with a letter or other token sandwiched within. Figure 9-1
shows the Visual Studio Object Browser displaying a number of generic items located within the
System.Collections.Generic namespace, including the highlighted List<T> class.

337

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 9 © COLLECTIONS AND GENERICS

Object Browser Dr > A X
Browse: .NET Framework 4.7 . @ O | ke B
<Search> - o=
b {} System.Collections - @ Add(T) -
b {} System.Collections.Concurrent @ AddRange(System.Collections.GenericlEnumerable<T>)
4 {} System.Collections.Generic @ AsReadOnly()
b *3 Comparer<T> @ BinarySearch(int, int, T, System.Collections.Generic.lComparer<T>)
» 3 Dictionary<TKey, TValue> @ BinarySearch(T)
I % Dictionary<TKey, TValue> Enumerator @ BinarySearch(T, System.Collections.Generic.|\Comparer<T=)
b *% Dictionary <TKey, TValue>KeyCollection @ Clear()
b &% Dictionary<TKey, TValue> KeyCollection.Enumerator & Contains(T)
b #3 Dictionary <TKey, TValue> ValueCollection @ ConvertAll<TOutput>(System.Converter<T,TOutput>)
] Dictionary < TKey, TValue>.ValueCollection. Enumeratc (o] CopyTolint, T[], int, int)
b *3 EqualityComparer<T> & CopyTo(T[)
b *0|Collection<T> @ CopyTo(T[), int)
P *0 [Comparer<T> @ Exists(System.Predicate<T>)
I =0 |Dicticnary < TKey, TValue> @ Find(System.Predicate<T>)
P *0 |Enumerable<T> | @ FindAlliSystem Predicate<T>) o
b *0 |Enumerator<T> public class List<T> -
b =0 |EqualityComparer<T> Member of System.Collections.Generic
b *0 |List<T>
I =0 |ReadOnlyCollection<T> |Summary:
b +0 IReadOnlyDictionary<TKey, TValue> Represents a strongly typed list of objeds. that can be accessed by index. Provides
b *0 IReadOnlylist<T> methods tc! search, sort, and manipulate lists.To browse the .NET Framework source
b %3 KeyNotFoundException code for this type, see the Reference Source.
E %:‘; KeyValuePair<TKey, TValue> Type Parameters:
-— T: The type of elements in the list.
b &w List<T>Enumerator
b {} System.Collections.ObjectModel Attributes:
b {} System.Configuration.Assemblies [System Reflection.DefaultMemberAttribute("Item"),
b {} System.Deploymentinternal System.Diagnostics.DebuggerTypeProxyAttribute(System.Collections.Generic.Mscorlib_
b {} System.Diagnostics ™ |CollectionDebugView'1),
4 b System.Diagnostics.DebuggerDisplayAttribute("Count = {Count)™)] o

Figure 9-1. Generic items supporting type parameters

Formally speaking, you call these tokens type parameters; however, in more user-friendly terms, you can
simply call them placeholders. You can read the symbol <T> as “of T Thus, you can read IEnumerable<T>
“as IEnumerable of T” or, to say it another way, “IEnumerable of type T

Note The name of a type parameter (placeholder) is irrelevant, and it is up to the developer who created
the generic item. However, typically Tis used to represent types, TKey or Kis used for keys, and TValue or Vis
used for values.

When you create a generic object, implement a generic interface, or invoke a generic member, it is up
to you to supply a value to the type parameter. You'll see many examples in this chapter and throughout
the remainder of the text. However, to set the stage, let’s see the basics of interacting with generic types and
members.

338

CHAPTER 9 * COLLECTIONS AND GENERICS

Specifying Type Parameters for Generic Classes/Structures

When you create an instance of a generic class or structure, you specify the type parameter when you
declare the variable and when you invoke the constructor. As you saw in the preceding code example,
UseGenericlist() defined two List<T> objects.

// This List<> can hold only Person objects.
List<Person> morePeople = new List<Person>();

You can read the preceding snippet as “a List<> of T, where T is of type Person.” Or, more simply, you
can read it as “a list of person objects.” After you specify the type parameter of a generic item, it cannot be
changed (remember, generics are all about type safety). When you specify a type parameter for a generic
class or structure, all occurrences of the placeholder(s) are now replaced with your supplied value.

If you were to view the full declaration of the generic List<T> class using the Visual Studio Object
Browser, you would see that the placeholder T is used throughout the definition of the List<T> type. Here is
a partial listing (note the items in bold):

// A partial listing of the List<T> class.
namespace System.Collections.Generic

public class List<T> :
IList<T>, ICollection<T>, IEnumerable<T>, IReadOnlylList<T>
IList, ICollection, IEnumerable

{
public void Add(T item);
public ReadOnlyCollection<T> AsReadOnly();
public int BinarySearch(T item);
public bool Contains(T item);
public void CopyTo(T[] array);
public int FindIndex(System.Predicate<T> match);
public T FindLast(System.Predicate<T> match);
public bool Remove(T item);
public int RemoveAll(System.Predicate<T> match);
public T[] ToArray();
public bool TrueForAll(System.Predicate<T> match);
public T this[int index] { get; set; }

When you create a List<T> specifying Person objects, it is as if the List<T> type were defined as follows:
namespace System.Collections.Generic

public class List<Pexson> :
IList<Person>, ICollection<Person>, IEnumerable<Person>, IReadOnlylList<Person>
IList, ICollection, IEnumerable

{

public void Add(Person item);
public ReadOnlyCollection<Person> AsReadOnly();
public int BinarySearch(Person item);

339

CHAPTER 9 © COLLECTIONS AND GENERICS

public bool Contains(Person item);

public void CopyTo(Person[] array);

public int FindIndex(System.Predicate<Person> match);
public Person FindLast(System.Predicate<Person> match);
public bool Remove(Person item);

public int RemoveAll(System.Predicate<Person> match);
public Person[] ToArray();

public bool TrueForAll(System.Predicate<Person> match);
public Person this[int index] { get; set; }

Of course, when you create a generic List<T> variable, the compiler does not literally create a new
implementation of the List<T> class. Rather, it will address only the members of the generic type you
actually invoke.

Specifying Type Parameters for Generic Members

It is fine for a nongeneric class or structure to support generic properties. In these cases, you would also
need to specify the placeholder value at the time you invoke the method. For example, System.Array
supports a several generic methods. Specifically, the nongeneric static Sort () method now has a generic
counterpart named Sort<T> (). Consider the following code snippet, where T is of type int:

int[] myInts = { 10, 4, 2, 33, 93 };

/1 Specify the placeholder to the generic
/1 Sort¢>() method.
Array.Sort<int>(myInts);

foreach (int i in myInts)

{

Console.WritelLine(i);

}

Specifying Type Parameters for Generic Interfaces

It is common to implement generic interfaces when you build classes or structures that need to support
various framework behaviors (e.g., cloning, sorting, and enumeration). In Chapter 8, you learned about a
number of nongeneric interfaces, such as IComparable, IEnumerable, IEnumerator, and IComparer. Recall
that the nongeneric IComparable interface was defined like this:

public interface IComparable

{

int CompareTo(object obj);
}

In Chapter 8, you also implemented this interface on your Car class to enable sorting in a standard
array. However, the code required several runtime checks and casting operations because the parameter was
ageneral System.Object.

340

http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 9

public class Car : IComparable

{

// IComparable implementation.
int IComparable.CompareTo(object obj)
{

Car temp = obj as Car;

if (temp != null)

if (this.CarID > temp.CarID)
return 1;
if (this.CarID < temp.CarID)
return -1;
else
return O;
}

else
throw new ArgumentException("Parameter is not a Car!");

Now assume you use the generic counterpart of this interface.

public interface IComparable<T>

{
int CompareTo(T obj);

}

In this case, your implementation code will be cleaned up considerably.

public class Car : IComparable<Car>

{

// IComparable<T> implementation.
int IComparable<Car>.CompareTo(Car obj)
{
if (this.CarID > obj.CarID)
return 1;
if (this.CarID < obj.CarID)
return -1;
else
return 0;

COLLECTIONS AND GENERICS

Here, you do not need to check whether the incoming parameter is a Car because it can only be a Car!
If someone were to pass in an incompatible data type, you would get a compile-time error. Now that you
have a better handle on how to interact with generic items, as well as the role of type parameters
(aka placeholders), you're ready to examine the classes and interfaces of the System.Collections.Generic

namespace.

341

CHAPTER 9 © COLLECTIONS AND GENERICS

The System.Collections.Generic Namespace

When you are building a .NET application and need a way to manage in-memory data, the classes of
System.Collections.Generic will most likely fit the bill. At the opening of this chapter, I briefly mentioned
some of the core nongeneric interfaces implemented by the nongeneric collection classes. Not too
surprisingly, the System.Collections.Generic namespace defines generic replacements for many of them.

In fact, you can find a number of the generic interfaces that extend their nongeneric counterparts. This
might seem odd; however, by doing so, implementing classes will also support the legacy functionally found
in their nongeneric siblings. For example, IEnumerable<T> extends IEnumerable. Table 9-4 documents the
core generic interfaces you'll encounter when working with the generic collection classes.

Table 9-4. Key Interfaces Supported by Classes of System.Collections.Generic

System.Collections.Generic Interface ~ Meaning in Life

ICollection<T> Defines general characteristics (e.g., size, enumeration,
and thread safety) for all generic collection types

IComparer<T> Defines a way to compare to objects

IDictionary<TKey, TValue> Allows a generic collection object to represent its contents
using key-value pairs

TEnumerable<T> Returns the IEnumerator<T> interface for a given object

IEnumerator<T> Enables foreach-style iteration over a generic collection

IList<T> Provides behavior to add, remove, and index items in a

sequential list of objects

ISet<T> Provides the base interface for the abstraction of sets

The System.Collections.Generic namespace also defines several classes that implement many of
these key interfaces. Table 9-5 describes some commonly used classes of this namespace, the interfaces they
implement, and their basic functionality.

342

Table 9-5. Classes of System.Collections.Generic

CHAPTER 9 * COLLECTIONS AND GENERICS

Generic Class

Supported Key Interfaces

Meaning in Life

Dictionary<TKey,
Tvalue>

LinkedList<T>
List<T>

Queue<T>

SortedDictionary<TKey,
Tvalue>

SortedSet<T>

Stack<T>

ICollection<Ty, IDictionary<TKey,
TValuey, IEnumerable<T>

ICollection<T>, IEnumerable<T>

ICollection<Ty, IEnumerable<Ts,
IList<T>

ICollection (Not a typo! This is the
nongeneric collection interface),
IEnumerable<T>

ICollection<T>, IDictionary<TKey,
TValue>, IEnumerable<T>

ICollection<Ty, IEnumerable<Ts,
ISet<T>

ICollection (Nota typo! This is the
nongeneric collection interface),
IEnumerable<T>

This represents a generic collection
of keys and values.

This represents a doubly linked list.

This is a dynamically resizable
sequential list of items.

This is a generic implementation of a
first-in, first-out list.

This is a generic implementation of a
sorted set of key-value pairs.

This represents a collection of
objects that is maintained in sorted
order with no duplication.

This is a generic implementation of a
last-in, first-out list.

The System.Collections.Generic namespace also defines many auxiliary classes and structures that
work in conjunction with a specific container. For example, the LinkedListNode<T> type represents a node
within a generic LinkedList<T>, the KeyNotFoundException exception is raised when attempting to grab an
item from a container using a nonexistent key, and so forth.

It is also worth pointing out that mscorlib.dll and System.dll are not the only assemblies that add
new types to the System.Collections.Generic namespace. For example, System.Core.d11 adds the
HashSet<T> class to the mix. Be sure to consult the .NET Framework documentation for full details of the
System.Collections.Generic namespace.

In any case, your next task is to learn how to use some of these generic collection classes. Before you do,
however, allow me to illustrate a C# language feature (first introduced in .NET 3.5) that simplifies the way
you populate generic (and nongeneric) collection containers with data.

Understanding Collection Initialization Syntax

In Chapter 4, you learned about object initialization syntax, which allows you to set properties on a new
variable at the time of construction. Closely related to this is collection initialization syntax. This C# language
feature makes it possible to populate many containers (such as ArrayList or List<T>) with items by using
syntax similar to what you use to populate a basic array.

Note

formalized by the ICollection<T>/ICollection interfaces.

You can apply collection initialization syntax only to classes that support an Add() method, which is

343

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 9 © COLLECTIONS AND GENERICS

Consider the following examples:

// Init a standard array.
int[] myArrayOfInts = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// Init a generic List<> of ints.
List<int> myGenericList = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// Init an Arraylist with numerical data.
Arraylist mylList = new Arraylist { o, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

If your container is managing a collection of classes or a structure, you can blend object initialization
syntax with collection initialization syntax to yield some functional code. You might recall the Point class
from Chapter 5, which defined two properties named X and Y. If you wanted to build a generic List<T> of
Point objects, you could write the following:

List<Point> myListOfPoints = new List<Point>

{

new Point { X =2, Y =21},

new Point { X =3, Y =3},

new Point(PointColor.BloodRed){ X = 4, Y = 4 }
};

foreach (var pt in myListOfPoints)
{

Console.WritelLine(pt);
}

Again, the benefit of this syntax is that you save yourself numerous keystrokes. While the nested curly
brackets can become difficult to read if you don’t mind your formatting, imagine the amount of code that
would be required to fill the following List<T> of Rectangles if you did not have collection initialization
syntax (you might recall from Chapter 4 that you created a Rectangle class that contained two properties
encapsulating Point objects).

List<Rectangle> mylListOfRects = new List<Rectangle>

{

new Rectangle {TopLeft = new Point { X = 10, Y = 10 },
BottomRight = new Point { X = 200, Y = 200}},
new Rectangle {TopLeft = new Point { X =2, Y =2},
BottomRight = new Point { X = 100, Y = 100}},
new Rectangle {TopLeft = new Point { X =5, Y =5 },

BottomRight = new Point { X = 90, Y = 75}}
};

foreach (var r in mylListOfRects)

{

Console.Writeline(r);

}

344

http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 9 * COLLECTIONS AND GENERICS

Working with the List<T> Class

Create a new Console Application project named FunWithGenericCollections. Note that your initial C# code
file already imports the System.Collections.Generic namespace.

The first generic class you will examine is List<T>, which you've already seen once or twice in this
chapter. The List<T> class is bound to be your most frequently used type in the System.Collections.Generic
namespace because it allows you to resize the contents of the container dynamically. To illustrate the basics
of this type, ponder the following method in your Program class, which leverages List<T> to manipulate the
set of Person objects shown earlier in this chapter; you might recall that these Person objects defined three
properties (Age, FirstName, and LastName) and a custom ToString() implementation:

static void UseGenericlist()
{
// Make a List of Person objects, filled with
// collection/object init syntax.
List<Person> people = new List<Person>()
{
new Person {FirstName= "Homer", LastName="Simpson", Age=47},
new Person {FirstName= "Marge", LastName="Simpson", Age=45},
new Person {FirstName= "Lisa", LastName="Simpson", Age=9},
new Person {FirstName= "Bart", LastName="Simpson", Age=8}

s

// Print out # of items in List.
Console.WriteLine("Items in list: {0}", people.Count);

// Enumerate over list.
foreach (Person p in people)

{

Console.WriteLine(p);

}

// Insert a new person.

Console.WriteLine("\n->Inserting new person.");

people.Insert(2, new Person { FirstName = "Maggie", LastName = "Simpson", Age = 2 });
Console.WriteLine("Items in list: {0}", people.Count);

// Copy data into a new array.
Person[] arrayOfPeople = people.ToArray();
foreach (Person p in arrayOfPeople)
{
Console.WriteLine("First Names: {0}", p.FirstName);
}
}

Here, you use initialization syntax to populate your List<T> with objects, as a shorthand notation for
calling Add () multiple times. After you print out the number of items in the collection (as well as enumerate
over each item), you invoke Insert(). Asyou can see, Insert() allows you to plug a new item into the
List<T> ata specified index.

345

CHAPTER 9 © COLLECTIONS AND GENERICS

Finally, notice the call to the ToArray() method, which returns an array of Person objects based on the
contents of the original List<T>. From this array, you loop over the items again using the array’s indexer
syntax. If you call this method from within Main(), you get the following output:

*dokkx Fun with Generic Collections ¥k

Items in list: 4

Name: Homer Simpson, Age: 47
Name: Marge Simpson, Age: 45
Name: Lisa Simpson, Age: 9
Name: Bart Simpson, Age: 8

->Inserting new person.
Items in list: 5

First Names: Homer
First Names: Marge
First Names: Maggie
First Names: Lisa

First Names: Bart

The List<T> class defines many additional members of interest, so be sure to consult the .NET
Framework documentation for more information. Next, let’s look at a few more generic collections,
specifically Stack<T>, Queue<T>, and SortedSet<T>. This should get you in a great position to understand
your basic choices regarding how to hold your custom application data.

Working with the Stack<T> Class

The Stack<T> class represents a collection that maintains items using a last-in, first-out manner. As you
might expect, Stack<T> defines members named Push() and Pop() to place items onto or remove items
from the stack. The following method creates a stack of Person objects:

static void UseGenericStack()

{
Stack<Person> stackOfPeople = new Stack<Person>();
stackOfPeople.Push(new Person { FirstName = "Homer", LastName = "Simpson", Age = 47 });
stackOfPeople.Push(new Person { FirstName = "Marge", LastName = "Simpson", Age = 45 });
stackOfPeople.Push(new Person { FirstName = "Lisa", LastName = "Simpson", Age = 9 });

// Now look at the top item, pop it, and look again.
Console.WritelLine("First person is: {0}", stackOfPeople.Peek());
Console.WriteLine("Popped off {0}", stackOfPeople.Pop());
Console.WriteLine("\nFirst person is: {0}", stackOfPeople.Peek());
Console.WriteLine("Popped off {0}", stackOfPeople.Pop());
Console.WriteLine("\nFirst person item is: {0}", stackOfPeople.Peek());
Console.WritelLine("Popped off {0}", stackOfPeople.Pop());

try
{

Console.WriteLine("\nnFirst person is: {0}", stackOfPeople.Peek());
Console.WritelLine("Popped off {0}", stackOfPeople.Pop());
}

346

CHAPTER 9 * COLLECTIONS AND GENERICS

catch (InvalidOperationException ex)

{
Console.WriteLine("\nError! {0}", ex.Message);
}
}

Here, you build a stack that contains three people, added in the order of their first names: Homer, Marge,
and Lisa. As you peek into the stack, you will always see the object at the top first; therefore, the first call to
Peek () reveals the third Person object. After a series of Pop() and Peek() calls, the stack eventually empties, at
which time additional Peek () and Pop() calls raise a system exception. You can see the output for this here:

*kkkk Fun with Generic Collections ¥k

First person is: Name: Lisa Simpson, Age: 9
Popped off Name: Lisa Simpson, Age: 9

First person is: Name: Marge Simpson, Age: 45
Popped off Name: Marge Simpson, Age: 45

First person item is: Name: Homer Simpson, Age: 47
Popped off Name: Homer Simpson, Age: 47

Error! Stack empty.

Working with the Queue<T> Class

Queues are containers that ensure items are accessed in a first-in, first-out manner. Sadly, we humans

are subject to queues all day long: lines at the bank, lines at the movie theater, and lines at the morning
coffeehouse. When you need to model a scenario in which items are handled on a first-come, first- served
basis, you will find the Queue<T> class fits the bill. In addition to the functionality provided by the supported
interfaces, Queue defines the key members shown in Table 9-6.

Table 9-6. Members of the Queue<T> Type

Select Member of Queue<T> Meaning in Life

Dequeue() Removes and returns the object at the beginning of the Queue<T>
Enqueue() Adds an object to the end of the Queue<T>

Peek() Returns the object at the beginning of the Queue<T> without removing it

Now let’s put these methods to work. You can begin by leveraging your Person class again and building
a Queue<T> object that simulates a line of people waiting to order coffee. First, assume you have the following
static helper method:

static void GetCoffee(Person p)
{

Console.WriteLine("{0} got coffee!", p.FirstName);

}

347

CHAPTER 9 © COLLECTIONS AND GENERICS

Now assume you have this additional helper method, which calls GetCoffee() internally:

static void UseGenericQueue()

{
// Make a Q with three people.
Queue<Person> peopleQ = new Queue<Person>();
peopleQ.Enqueue(new Person {FirstName= "Homer", LastName="Simpson", Age=47});
peopleQ.Enqueue(new Person {FirstName= "Marge", LastName="Simpson", Age=45});
peopleQ.Enqueue(new Person {FirstName= "Lisa", LastName="Simpson", Age=9});

// Peek at first person in Q.
Console.WriteLine("{0} is first in line!", peopleQ.Peek().FirstName);

// Remove each person from Q.
GetCoffee(peopleQ.Dequeue());
GetCoffee(peopleQ.Dequeue());
GetCoffee(peopleQ.Dequeue());
// Try to de-Q again?

try

GetCoffee(peopleQ.Dequeue());
}

catch(InvalidOperationException e)
{
Console.WriteLine("Error! {0}", e.Message);
}
}

Here, you insert three items into the Queue<T> class using its Enqueue () method. The call to Peek()
allows you to view (but not remove) the first item currently in the Queue. Finally, the call to Dequeue ()
removes the item from the line and sends it into the GetCoffee() helper function for processing. Note that
if you attempt to remove items from an empty queue, a runtime exception is thrown. Here is the output you
receive when calling this method:

ok Fun with Generic Collections ok

Homer is first in line!
Homer got coffee!

Marge got coffee!

Lisa got coffee!

Error! Queue empty.

Working with the SortedSet<T> Class

The SortedSet<T> class is useful because it automatically ensures that the items in the set are sorted when
you insert or remove items. However, you do need to inform the SortedSet<T> class exactly how you

want it to sort the objects, by passing in as a constructor argument an object that implements the generic
IComparer<T> interface

348

CHAPTER 9 * COLLECTIONS AND GENERICS

Begin by creating a new class named SortPeopleByAge, which implements IComparer<T>, where T is
of type Person. Recall that this interface defines a single method named Compare(), where you can author
whatever logic you require for the comparison. Here is a simple implementation of this class:

class SortPeopleByAge : IComparer<Person>
{

public int Compare(Person firstPerson, Person secondPerson)

{

if (firstPerson?.Age > secondPerson?.Age)

{

return 1;

if (firstPerson?.Age < secondPerson?.Age)

{

return -1;

}
return 0;
}
}

Now update your Program class with the following new method, which I assume you will call from
Main():

static void UseSortedSet()
{
// Make some people with different ages.
SortedSet<Person> setOfPeople = new SortedSet<Person>(new SortPeopleByAge())
{
new Person {FirstName= "Homer", LastName="Simpson", Age=47},
new Person {FirstName= "Marge", LastName="Simpson", Age=45},
new Person {FirstName= "Lisa", LastName="Simpson", Age=9},
new Person {FirstName= "Bart", LastName="Simpson", Age=8}

|5

// Note the items are sorted by age!
foreach (Person p in setOfPeople)

{

Console.WriteLine(p);

}

Console.WriteLine();

// Add a few new people, with various ages.
setOfPeople.Add(new Person { FirstName = "Saku", LastName = "Jones", Age = 1 });
setOfPeople.Add(new Person { FirstName = "Mikko", LastName = "Jones", Age = 32 });

// Still sorted by age!
foreach (Person p in setOfPeople)

{

Console.WriteLine(p);

}
}

349

CHAPTER 9 © COLLECTIONS AND GENERICS

When you run your application, the listing of objects is now always ordered based on the value of the
Age property, regardless of the order you inserted or removed objects.

wokkx Fun with Generic Collections ¥k

Name: Bart Simpson, Age: 8
Name: Lisa Simpson, Age: 9
Name: Marge Simpson, Age: 45
Name: Homer Simpson, Age: 47

Name: Saku Jones, Age: 1
Name: Bart Simpson, Age: 8
Name: Lisa Simpson, Age: 9
Name: Mikko Jones, Age: 32
Name: Marge Simpson, Age: 45
Name: Homer Simpson, Age: 47

Working with the Dictionary<TKey, TValue> Class

Another handy generic collection is the Dictionary<TKey, TValue> type, which allows you to hold any
number of objects that may be referred to via a unique key. Thus, rather than obtaining an item from a
List<T> using a numerical identifier (for example, “Give me the second object”), you could use the unique
text key (for example, “Give me the object I keyed as Homer”).

Like other collection objects, you can populate a Dictionary<TKey, TValue> by calling the generic
Add() method manually. However, you can also fill a Dictionary<TKey, TValue> using collection
initialization syntax. Do be aware that when you are populating this collection object, key names must be
unique. If you mistakenly specify the same key multiple times, you will receive a runtime exception.

Consider the following method that fills a Dictionary<K, V> with various objects. Notice when you
create the Dictionary<TKey, TValue> object, you specify the key type (TKey) and underlying object type
(TValue) as constructor arguments. Here, you are using a string data type as the key (although this is not
required; the key can be any type) and a Person type as the value.

private static void UseDictionary()

{
// Populate using Add() method
Dictionary<string, Person> peopleA = new Dictionary<string, Person>();
peopleA.Add("Homer", new Person { FirstName = "Homer", LastName = "Simpson", Age = 47 });
peopleA.Add("Marge", new Person { FirstName = "Marge", LastName = "Simpson", Age = 45 });
peopleA.Add("Lisa", new Person { FirstName = "Lisa", LastName = "Simpson", Age = 9 });

// Get Homer.
Person homer = peopleA["Homer"];
Console.WritelLine(homer);

// Populate with initialization syntax.
Dictionary<string, Person> peopleB = new Dictionary<string, Person>()

{

"Homer", LastName
"Marge", LastName

{ "Homer", new Person { FirstName
{ "Marge", new Person { FirstName

"Simpson", Age = 47 } },
"Simpson", Age

1}
S
v

-
—
-

350

CHAPTER 9 * COLLECTIONS AND GENERICS

{ "Lisa", new Person { FirstName = "Lisa", LastName = "Simpson", Age = 9 } }

};

// Get Lisa.
Person lisa = peopleB["Lisa"];
Console.Writeline(lisa);

It is also possible to populate a Dictionary<TKey, TValue> using a related initialization syntax
introduced with the current version of .NET that is specific to this type of container (not surprisingly termed
dictionary initialization). Similar to the syntax used to populate the personB object in the previous code
example, you still define an initialization scope for the collection object; however, you can use the indexer to
specify the key and assign this to a new object as so:

// Populate with dictionary initialization syntax.
Dictionary<string, Person> peopleC = new Dictionary<string, Person>()

{
["Homer"] = new Person { FirstName = "Homer", LastName = "Simpson", Age = 47 },
["Marge"] = new Person { FirstName = "Marge", LastName = "Simpson", Age = 45 },
["Lisa"] = new Person { FirstName = "Lisa", LastName = "Simpson", Age = 9 }

};

Note You can find the FunWithGenericCollections project in the Chapter 9 subdirectory.

The System.Collections.ObjectModel Namespace

Now that you understand how to work with the major generic classes, you can briefly examine an additional
collection-centric namespace, System.Collections.ObjectModel. This is a relatively small namespace,
which contains a handful of classes. Table 9-7 documents the two classes that you should most certainly be
aware of.

Table 9-7. Useful Members of System.Collections.0ObjectModel

System.Collections.ObjectModel Type Meaning in Life

ObservableCollection<T> Represents a dynamic data collection that provides
notifications when items get added, when items get
removed, or when the whole list is refreshed

ReadOnlyObservableCollection<T> Represents a read-only version of
ObservableCollection<T>

The ObservableCollection<T> class is useful in that it has the ability to inform external objects when
its contents have changed in some way (as you might guess, working with ReadOnlyObservableCollection
<T> is similar but read-only in nature).

351

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 9 © COLLECTIONS AND GENERICS

Working with ObservableCollection<T>

Create a new Console Application project named FunWithObservableCollections and import the
System.Collections.ObjectModel namespace into your initial C# code file. In many ways, working with
ObservableCollection<T> is identical to working with List<T>, given that both of these classes implement
the same core interfaces. What makes the ObservableCollection<T> class unique is that this class supports
an event named CollectionChanged. This event will fire whenever a new item is inserted, a current item is
removed (or relocated), or the entire collection is modified.

Like any event, CollectionChanged is defined in terms of a delegate, which in this case is
NotifyCollectionChangedEventHandler. This delegate can call any method that takes an object as the
first parameter and takes a NotifyCollectionChangedEventArgs as the second. Consider the following
Main() method, which populates an observable collection containing Person objects and wires up the
CollectionChanged event:

class Program

{
static void Main(string[] args)
{
// Make a collection to observe and add a few Person objects.
ObservableCollection<Person> people = new ObservableCollection<Person>()
{
new Person{ FirstName = "Peter", LastName = "Murphy", Age = 52 },
new Person{ FirstName = "Kevin", LastName = "Key", Age = 48 },
};
// Wire up the CollectionChanged event.
people.CollectionChanged += people CollectionChanged;
}

static void people CollectionChanged(object sender, System.Collections.Specialized.
NotifyCollectionChangedEventArgs e)

{
throw new NotImplementedException();

}
}

The incoming NotifyCollectionChangedEventArgs parameter defines two important properties,
0ldItems and NewItems, which will give you a list of items that were currently in the collection before the
event fired and the new items that were involved in the change. However, you will want to examine these
lists only under the correct circumstances. Recall that the CollectionChanged event can fire when items are
added, removed, relocated, or reset. To discover which of these actions triggered the event, you can use the
Action property of NotifyCollectionChangedEventArgs. The Action property can be tested against any of
the following members of the NotifyCollectionChangedAction enumeration:

public enum NotifyCollectionChangedAction
{

Add = 0,

Remove = 1,

Replace = 2,

Move = 3,

Reset = 4,

352

CHAPTER 9 * COLLECTIONS AND GENERICS

Here is an implementation of the CollectionChanged event handler that will traverse the old and new
sets when an item has been inserted into or removed from the collection at hand:

static void people CollectionChanged(object sender,
System.Collections.Specialized.NotifyCollectionChangedEventArgs e)
{
// What was the action that caused the event?
Console.WritelLine("Action for this event: {0}", e.Action);

// They removed something.
if (e.Action == System.Collections.Specialized.NotifyCollectionChangedAction.Remove)
{

Console.WriteLine("Here are the OLD items:");

foreach (Person p in e.0ldItems)

{

Console.WriteLine(p.ToString());
}

Console.WriteLine();

}

// They added something.
if (e.Action == System.Collections.Specialized.NotifyCollectionChangedAction.Add)
{
// Now show the NEW items that were inserted.
Console.WritelLine("Here are the NEW items:");
foreach (Person p in e.NewItems)
{
Console.WriteLine(p.ToString());
}
}
}

Now, assuming you have updated your Main() method to add and remove an item, you will see output
similar to the following:

Action for this event: Add
Here are the NEW items:
Name: Fred Smith, Age: 32

Action for this event: Remove
Here are the OLD items:
Name: Peter Murphy, Age: 52

That wraps up the examination of the various collection-centric namespaces in the .NET base class
libraries. To conclude the chapter, you will now examine how you can build your own custom generic
methods and custom generic types.

Source Code You can find the FunWithObservableCollection project in the Chapter 9 subdirectory.

353

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 9 © COLLECTIONS AND GENERICS

Creating Custom Generic Methods

While most developers typically use the existing generic types within the base class libraries, it is also
possible to build your own generic members and custom generic types. Let’s look at how to incorporate
custom generics into your own projects. The first step is to build a generic swap method. Begin by creating a
new console application named CustomGenericMethods.

When you build custom generic methods, you achieve a supercharged version of traditional method
overloading. In Chapter 2, you learned that overloading is the act of defining multiple versions of a single
method, which differ by the number of, or type of, parameters.

While overloading is a useful feature in an object-oriented language, one problem is that you can easily
end up with a ton of methods that essentially do the same thing. For example, assume you need to build
some methods that can switch two pieces of data using a simple swap routine. You might begin by authoring
anew method that can operate on integers, like this:

// Swap two integers.
static void Swap(ref int a, ref int b)

{
int temp = a;
a = b;
b = temp;

}

So far, so good. But now assume you also need to swap two Person objects; this would require authoring
anew version of Swap().

// Swap two Person objects.
static void Swap(ref Person a, ref Person b)

{
Person temp = a;
a = b;
b = temp;

}

No doubt, you can see where this is going. If you also needed to swap floating-point numbers,
bitmaps, cars, buttons, and whatnot, you would have to build even more methods, which would become a
maintenance nightmare. You could build a single (nongeneric) method that operated on object parameters,
but then you face all the issues you examined earlier in this chapter, including boxing, unboxing, a lack of
type safety, explicit casting, and so on.

Whenever you have a group of overloaded methods that differ only by incoming arguments, this is your
clue that generics could make your life easier. Consider the following generic Swap<T> method that can swap
any two Ts:

// This method will swap any two items.
// as specified by the type parameter <T>.
static void Swap<T>(ref T a, ref T b)
{
Console.WriteLine("You sent the Swap() method a {0}", typeof(T));
T temp = a;
a=b;
b = temp;
}

354

http://dx.doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 9 * COLLECTIONS AND GENERICS

Notice how a generic method is defined by specifying the type parameters after the method name but
before the parameter list. Here, you state that the Swap<T> () method can operate on any two parameters of
type <T>. To spice things up a bit, you also print out the type name of the supplied placeholder to the console
using C#'s typeof () operator. Now consider the following Main() method, which swaps integers and strings:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Custom Generic Methods ****¥\n");

// Swap 2 ints.

int a = 10, b = 90;

Console.WriteLine("Before swap: {0}, {1}", a, b);
Swap<int>(ref a, ref b);

Console.WritelLine("After swap: {0}, {1}", a, b);
Console.WriteLine();

// Swap 2 strings.

string s1 = "Hello", s2 = "There";
Console.WriteLine("Before swap: {0} {1}!", si, s2);
Swap<string>(ref si1, ref s2);
Console.WritelLine("After swap: {0} {1}!", s1, s2);

Console.ReadlLine();

The output looks like this:

*krkk Fun with Custom Generic Methods *****

Before swap: 10, 90
You sent the Swap() method a System.Int32
After swap: 90, 10

Before swap: Hello There!
You sent the Swap() method a System.String
After swap: There Hello!

The major benefit of this approach is that you have only one version of Swap<T> () to maintain, yet it
can operate on any two items of a given type in a type-safe manner. Better yet, stack-based items stay on the
stack, while heap-based items stay on the heap!

355

CHAPTER 9 © COLLECTIONS AND GENERICS

Inference of Type Parameters

When you invoke generic methods such as Swap<T>, you can optionally omit the type parameter if

(and only if) the generic method requires arguments because the compiler can infer the type parameter
based on the member parameters. For example, you could swap two System.Boolean values by adding the
following code to Main():

// Compiler will infer System.Boolean.

bool b1 = true, b2 = false;
Console.Writeline("Before swap: {0}, {1}", b1, b2);
Swap(ref b1, ref b2);

Console.WriteLine("After swap: {0}, {1}", b1, b2);

Even though the compiler is able to discover the correct type parameter based on the data type used to
declare b1 and b2, you should get in the habit of always specifying the type parameter explicitly.

Swap<string>(ref b1, ref b2);

This makes it clear to your fellow programmers that this method is indeed generic. Moreover, inference
of type parameters works only if the generic method has at least one parameter. For example, assume you
have the following generic method in your Program class:

static void DisplayBaseClass<T>()
{

// BaseType is a method used in reflection,

// which will be examined in Chapter 15

Console.WriteLine("Base class of {0} is: {1}.", typeof(T), typeof(T).BaseType);
}

In this case, you must supply the type parameter upon invocation.

static void Main(string[] args)

{
// Must supply type parameter if
// the method does not take params.

DisplayBaseClass<int>();
DisplayBaseClass<string>();

// Compiler error! No params? Must supply placeholder!
// DisplayBaseClass();
Console.ReadlLine();

Currently, the generic Swap<T> and DisplayBaseClass<T> methods are defined within the application’s
Program class. Of course, as with any method, you are free to define these members in a separate class type
(MyGenericMethods) if you would prefer to do it that way.

356

CHAPTER 9 * COLLECTIONS AND GENERICS

public static class MyGenericMethods

{
public static void Swap<T>(ref T a, ref T b)
{
Console.WriteLine("You sent the Swap() method a {0}", typeof(T));
T temp = a;
a =b;
b = temp;
}
public static void DisplayBaseClass<T>()
{
Console.WritelLine("Base class of {0} is: {1}.", typeof(T), typeof(T).BaseType);
}
}

The static Swap<T> and DisplayBaseClass<T> methods have been scoped within a new static class type,
so you need to specify the type’s name when invoking either member, as in this example:

MyGenericMethods.Swap<int>(ref a, ref b);
Of course, generic methods do not need to be static. If Swap<T> and DisplayBaseClass<T> were
instance level (and defined in a nonstatic class), you would simply make an instance of MyGenericMethods

and invoke them using the object variable.

MyGenericMethods c = new MyGenericMethods();
c.Swap<int>(ref a, ref b);

Source Code You can find the CustomGenericMethods project in the Chapter 9 subdirectory.

Creating Custom Generic Structures and Classes

Now that you understand how to define and invoke generic methods, it’s time to turn your attention to the
construction of a generic structure (the process of building a generic class is identical) within a new Console
Application project named GenericPoint. Assume you have built a generic Point structure that supports a
single type parameter that represents the underlying storage for the (x, y) coordinates. The caller can then
create Point<T> types as follows:

// Point using ints.
Point<int> p = new Point<int>(10, 10);

// Point using double.
Point<double> p2 = new Point<double>(5.4, 3.3);

357

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 9 © COLLECTIONS AND GENERICS

Here is the complete definition of Point<T>, with some analysis to follow:

// A generic Point structure.
public struct Point<T>
{
// Generic state date.
private T xPos;
private T yPos;

// Generic constructor.
public Point(T xVal, T yval)
{

xPos = xVal;

yPos = yVal;
}

// Generic properties.
public T X
{
get { return xPos; }
set { xPos = value; }

}

public T Y
{
get { return yPos; }
set { yPos = value; }
}

public override string ToString() => $"[{xPOs}, {yPos}]";

// Reset fields to the default value of the
// type parameter.
public void ResetPoint()
{
xPos
yPos
}
}

default(T);
default(T);

The default Keyword in Generic Code

Asyou can see, Point<T> leverages its type parameter in the definition of the field data, constructor
arguments, and property definitions. Notice that, in addition to overriding ToString(), Point<T> defines a
method named ResetPoint() that uses some new syntax you have not yet seen.

// The "default" keyword is overloaded in Ci.

// When used with generics, it represents the default
// value of a type parameter.

358

CHAPTER 9 * COLLECTIONS AND GENERICS

public void ResetPoint()
{
X
Y

default(T);
default(T);

}

With the introduction of generics, the C# default keyword has been given a dual identity. In addition
to its use within a switch construct, it can also be used to set a type parameter to its default value. This is
helpful because a generic type does not know the actual placeholders up front, which means it cannot safely
assume what the default value will be. The defaults for a type parameter are as follows:

e Numeric values have a default value of 0.
e Reference types have a default value of null.
e Fields of a structure are set to 0 (for value types) or null (for reference types).

For Point<T>, you can set the X and Y values to 0 directly because it is safe to assume the caller will
supply only numerical data. However, you can also increase the overall flexibility of the generic type by using
the default(T) syntax. In any case, you can now exercise the methods of Point<T>.

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Generic Structures ****¥\n");
// Point using ints.
Point<int> p = new Point<int>(10, 10);
Console.WriteLine("p.ToString()={0}", p.ToString());
p.ResetPoint();
Console.WriteLine("p.ToString()={0}", p.ToString());
Console.Writeline();
// Point using double.
Point<double> p2 = new Point<double>(5.4, 3.3);
Console.WriteLine("p2.ToString()={0}", p2.ToString());
p2.ResetPoint();
Console.WriteLine("p2.ToString()={0}", p2.ToString());
Console.ReadlLine();

}

Here is the output:

wkklk Fun with Generic Structures *xk

p.ToString()=[10, 10]
p.ToString()=[0, 0]

p2.ToString()=[5.4, 3.3]
p2.ToString()=[0, 0]

359

CHAPTER 9 © COLLECTIONS AND GENERICS

Source Code You can find the GenericPoint project in the Chapter 9 subdirectory.

Constraining Type Parameters

As this chapter illustrates, any generic item has at least one type parameter that you need to specify at the
time you interact with the generic type or member. This alone allows you to build some type-safe code;
however, the .NET platform allows you to use the where keyword to get extremely specific about what a given
type parameter must look like.

Using this keyword, you can add a set of constraints to a given type parameter, which the C# compiler
will check at compile time. Specifically, you can constrain a type parameter as described in Table 9-8.

Table 9-8. Possible Constraints for Generic Type Parameters

Generic Constraint Meaning in Life

where T : struct The type parameter <T> must have System.ValueType in its chain of
inheritance (i.e., <T> must be a structure).

where T : class The type parameter <T> must not have System.ValueType in its chain
of inheritance (i.e., <T> must be a reference type).

where T : new() The type parameter <T> must have a default constructor. This is
helpful if your generic type must create an instance of the type
parameter because you cannot assume you know the format of
custom constructors. Note that this constraint must be listed last on a

multiconstrained type.

where T : NameOfBaseClass The type parameter <T> must be derived from the class specified by
NameOfBaseClass.

where T : NameOfInterface The type parameter <T> must implement the interface specified by

NameOfInterface. You can separate multiple interfaces as a
comma-delimited list.

Unless you need to build some extremely type-safe custom collections, you might never need to use the
where keyword in your C# projects. Regardless, the following handful of (partial) code examples illustrate
how to work with the where keyword.

Examples Using the where Keyword

Begin by assuming that you have created a custom generic class, and you want to ensure that the type
parameter has a default constructor. This could be useful when the custom generic class needs to create
instances of the T because the default constructor is the only constructor that is potentially common to
all types. Also, constraining T in this way lets you get compile-time checking; if T is a reference type, the
programmer remembered to redefine the default in the class definition (you might recall that the default
constructor is removed in classes when you define your own).

360

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 9 * COLLECTIONS AND GENERICS

// MyGenericClass derives from object, while
// contained items must have a default ctor.
public class MyGenericClass<T> where T : new()

{
.

Notice that the where clause specifies which type parameter is being constrained, followed by a colon
operator. After the colon operator, you list each possible constraint (in this case, a default constructor). Here
is another example:

// MyGenericClass derives from object, while

// contained items must be a class implementing IDrawable

// and must support a default ctor.

public class MyGenericClass<T> where T : class, IDrawable, new()

{
.

In this case, T has three requirements. It must be a reference type (not a structure), as marked with
the class token. Second, T must implement the IDrawable interface. Third, it must also have a default
constructor. Multiple constraints are listed in a comma-delimited list; however, you should be aware that the
new() constraint must always be listed last! Thus, the following code will not compile:

// Error! new() constraint must be listed last!
public class MyGenericClass<T> where T : new(), class, IDrawable

{
-

If you ever create a custom generic collection class that specifies multiple type parameters, you can
specify a unique set of constraints for each, using separate where clauses.

// <K> must extend SomeBaseClass and have a default ctor,

// while <T> must be a structure and implement the

// generic IComparable interface.

public class MyGenericClass<K, T> where K : SomeBaseClass, new()
where T : struct, IComparable<T>

}
You will rarely encounter cases where you need to build a complete custom generic collection class;
however, you can use the where keyword on generic methods, as well. For example, if you want to specify

that your generic Swap<T>() method can operate only on structures, you would update the method like this:

// This method will swap any structure, but not classes.
static void Swap<T>(ref T a, ref T b) where T : struct

{
.

361

CHAPTER 9 © COLLECTIONS AND GENERICS

Note that if you were to constrain the Swap () method in this manner, you would no longer be able to
swap string objects (as is shown in the sample code) because string is a reference type.

The Lack of Operator Constraints

I want to make one more comment about generic methods and constraints as this chapter draws to a close.
It might come as a surprise to you to find out that when creating generic methods, you will get a compiler
error if you apply any C# operators (+, -, *, ==, etc.) on the type parameters. For example, imagine the
usefulness of a class that can add, subtract, multiply, and divide generic types.

// Compiler error! Cannot apply
// operators to type parameters!
public class BasicMath<T>
{
public T Add(T argi, T arg2)
{ return arg1l + arg2; }
public T Subtract(T argi, T arg2)
{ return argi - arg2; }
public T Multiply(T argil, T arg2)
{ return argi * arg2; }
public T Divide(T argl, T arg2)
{ return arg1 / arg2; }

}

Unfortunately, the preceding BasicMath class will not compile. While this might seem like a major
restriction, you need to remember that generics are generic. Of course, the numerical data can work just fine
with the binary operators of C#. However, for the sake of argument, if <T> were a custom class or structure
type, the compiler could assume the class supports the +, -, *, and / operators. Ideally, C# would allow a
generic type to be constrained by supported operators, as in this example:

// Illustrative code only!

public class BasicMath<T> where T : operator +, operator -,
operator *, operator /

{
public T Add(T argi, T arg2)
{ return argi + arg2; }
public T Subtract(T argl, T arg2)
{ return arg1l - arg2; }
public T Multiply(T argil, T arg2)
{ return argi * arg2; }
public T Divide(T argi, T arg2)
{ return arg1 / arg2; }

}

Alas, operator constraints are not supported under the current version of C#. However, it is possible
(albeit it requires a bit more work) to achieve the desired effect by defining an interface that supports these
operators (C# interfaces can define operators!) and then specifying an interface constraint of the generic
class. In any case, this wraps up this book’s initial look at building custom generic types. In Chapter 10, I will
pick up the topic of generics once again in the course of examining the .NET delegate type.

362

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 9 * COLLECTIONS AND GENERICS

Summary

This chapter began by examining the nongeneric collection types of System.Collections and System.
Collections.Specialized, including the various issues associated with many nongeneric containers,
including a lack of type safety and the runtime overhead of boxing and unboxing operations. As mentioned,
for these very reasons, modern-day .NET programs will typically make use of the generic collection classes
found in System.Collections.Generic and System.Collections.ObjectModel.

As you have seen, a generic item allows you to specify placeholders (type parameters) that you specify
at the time of object creation (or invocation, in the case of generic methods). While you will most often
simply use the generic types provided in the .NET base class libraries, you will also be able to create your
own generic types (and generic methods). When you do so, you have the option of specifying any number
of constraints (using the where keyword) to increase the level of type safety and ensure that you perform
operations on types of a known quantity that are guaranteed to exhibit certain basic capabilities.

As a final note, remember that generics are found in numerous locations within the .NET base class
libraries. Here, you focused specifically on generic collections. However, as you work through the remainder
of this book (and when you dive into the platform on your own terms), you will certainly find generic classes,
structures, and delegates located in a given namespace. As well, be on the lookout for generic members of a
nongeneric class!

363

CHAPTER 10

Delegates, Events, and Lambda
Expressions

Up to this point in the text, most of the applications you have developed added various bits of code to
Main(), which, in some way or another, sent requests fo a given object. However, many applications require
that an object be able to communicate back to the entity that created it using a callback mechanism. While
callback mechanisms can be used in any application, they are especially critical for graphical user interfaces
in that controls (such as a button) need to invoke external methods under the correct circumstances

(when the button is clicked, when the mouse enters the button surface, and so forth).

Under the .NET platform, the delegate type is the preferred means of defining and responding to
callbacks within applications. Essentially, the .NET delegate type is a type-safe object that “points to” a
method or a list of methods that can be invoked at a later time. Unlike a traditional C++ function pointer,
however, .NET delegates are classes that have built-in support for multicasting and asynchronous method
invocation.

In this chapter, you will learn how to create and manipulate delegate types, and then you'll investigate
the C# event keyword, which streamlines the process of working with delegate types. Along the way, you will
also examine several delegate- and event-centric language features of C#, including anonymous methods
and method group conversions.

I'wrap up this chapter by examining lambda expressions. Using the C# lambda operator (=>), you can
specify a block of code statements (and the parameters to pass to those code statements) wherever a strongly
typed delegate is required. As you will see, a lambda expression is little more than an anonymous method in
disguise and provides a simplified approach to working with delegates. In addition, this same operation
(as of .NET 4.6) can be used to implement a single-statement method or property using a concise syntax.

Understanding the .NET Delegate Type

Before formally defining .NET delegates, let’s gain a bit of perspective. Historically, the Windows API made
frequent use of C-style function pointers to create entities termed callback functions, or simply callbacks.
Using callbacks, programmers were able to configure one function to report back to (call back) another
function in the application. With this approach, Windows developers were able to handle button clicking,
mouse moving, menu selecting, and general bidirectional communications between two entities in memory.
In the .NET Framework, callbacks are accomplished in a type-safe and object-oriented manner using
delegates. In essence, a delegate is a type-safe object that points to another method (or possibly a list of methods)

© Andrew Troelsen and Philip Japikse 2017 365
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_10

https://doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

in the application, which can be invoked at a later time. Specifically, a delegate maintains three important pieces
of information.

e The address of the method on which it makes calls
e The parameters (if any) of this method

e The return type (if any) of this method

Note .NET delegates can point to either static or instance methods.

After a delegate object has been created and given the necessary information, it may dynamically
invoke the method(s) it points to at runtime. Every delegate in the .NET Framework (including your custom
delegates) is automatically endowed with the ability to call its methods synchronously or asynchronously.
This fact greatly simplifies programming tasks, given that you can call a method on a secondary thread of
execution without manually creating and managing a Thread object.

Note You will examine the asynchronous behavior of delegate types during your investigation of threading
and asynchronous calls in Chapter 19. In this chapter, you are concerned only with the synchronous aspects of
the delegate type.

Defining a Delegate Type in C#

When you want to create a delegate type in C#, you use the delegate keyword. The name of your delegate
type can be whatever you desire. However, you must define the delegate to match the signature of the
method(s) it will point to. For example, the following delegate type (named BinaryOp) can point to any
method that returns an integer and takes two integers as input parameters (you will build and use this
delegate yourself a bit later in this chapter, so hang tight for now):

// This delegate can point to any method,
// taking two integers and returning an integer.
public delegate int BinaryOp(int x, int y);

When the C# compiler processes delegate types, it automatically generates a sealed class deriving from
System.MulticastDelegate. This class (in conjunction with its base class, System.Delegate) provides the
necessary infrastructure for the delegate to hold onto a list of methods to be invoked at a later time. For
example, if you were to examine the BinaryOp delegate using ildasm.exe, you would find the class shown in
Figure 10-1 (you will build this full example in just a moment if you want to check for yourself).

366

http://dx.doi.org/10.1007/978-1-4842-3018-3_19

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

;y CA\GitHub\procsharp\Code\Updated\Chapter_10\SimpleDelegate\SimpleDelegate\bin\Debug\Sim.. ~ — O X
File View Help

[SBX B C:\GitHublprocsharp\Code|Updated\Chapter _101SimpleDelegate!SimpleDelegateibiniDebug!SimpleDelegate.exe
-~ p MANIFEST
&~ SimpleDelegate
B E SimpleDelegate BinaryOp

- b .class public auto ansi sealed
- B extends [mscorlib]System.MulticastDelegate
-M .ctor : void{object,native int)
B Beginlnvoke : class [mscorlib]System. lasyncResult{int32,ink 32, class [mscorlib]System. AsyncCallback,object)
-l EndInvoke : int32(class [mscorlib]System. IAsyncResult)
- B Invoke @ ink32(ink32,int32)
EB E SimpleDelegate. . Program
i simpleDelegate. SimpleMath

.assembly SimpleDelegate A
{

Figure 10-1. The C# delegate keyword represents a sealed class deriving from System.MulticastDelegate

Asyou can see, the compiler-generated BinaryOp class defines three public methods. Invoke()
is perhaps the key method, as it is used to invoke each method maintained by the delegate objectin a
synchronous manner, meaning the caller must wait for the call to complete before continuing on its way.
Strangely enough, the synchronous Invoke() method may not need to be called explicitly from your C#
code. As you will see in just a bit, Invoke() is called behind the scenes when you use the appropriate C#
syntax.

BeginInvoke() and EndInvoke() provide the ability to call the current method asynchronously on a
separate thread of execution. If you have a background in multithreading, you know that one of the most
common reasons developers create secondary threads of execution is to invoke methods that require time to
complete. Although the .NET base class libraries supply several namespaces devoted to multithreaded and
parallel programming, delegates provide this functionality out of the box.

Now, how exactly does the compiler know how to define the Invoke(), BeginInvoke(), and
EndInvoke() methods? To understand the process, here is the crux of the compiler-generated BinaryOp class
type (bold italic marks the items specified by the defined delegate type):

sealed class BinaryOp : System.MulticastDelegate
{
public imt Invoke(int x, int y);
public IAsyncResult BeginInvoke(int x, int y,
AsyncCallback cb, object state);
public int EndInvoke(IAsyncResult result);
}

First, notice that the parameters and return type defined for the Invoke() method exactly match the
definition of the BinaryOp delegate. The initial parameters to BeginInvoke () members (two integers,
in this case) are also based on the BinaryOp delegate; however, BeginInvoke() will always provide two
final parameters (of type AsyncCallback and object) that are used to facilitate asynchronous method
invocations. Finally, the return type of EndInvoke() is identical to the original delegate declaration and will
always take as a sole parameter an object implementing the IAsyncResult interface.

367

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Let’s see another example. Assume you have defined a delegate type that can point to any method
returning a string and receiving three System.Boolean input parameters.

public delegate string MyDelegate (bool a, bool b, bool c);
This time, the compiler-generated class breaks down as follows:

sealed class MyDelegate : System.MulticastDelegate
{
public string Invoke(bool a, bool b, bool c);
public IAsyncResult BeginInvoke(bool a, bool b, bool c,
AsyncCallback cb, object state);
public string EndInvoke(IAsyncResult result);

}

Delegates can also “point to” methods that contain any number of out or ref parameters (as well as
array parameters marked with the params keyword). For example, assume the following delegate type:

public delegate string MyOtherDelegate(out bool a, ref bool b, int c);

The signatures of the Invoke() and BeginInvoke() methods look as you would expect; however, check
out the following EndInvoke () method, which now includes the set of all out/ref arguments defined by the
delegate type:

public sealed class MyOtherDelegate : System.MulticastDelegate
{

public string Invoke(out bool a, ref bool b, int c);

public IAsyncResult BeginInvoke(out bool a, ref bool b, int c,
AsyncCallback cb, object state);

public string EndInvoke(out bool a, ref bool b, IAsyncResult result);

}

To summarize, a C# delegate type definition results in a sealed class with three compiler-generated
methods whose parameter and return types are based on the delegate’s declaration. The following
pseudocode approximates the basic pattern:

// This is only pseudo-code!
public sealed class DelegateName : System.MulticastDelegate

public delegateReturnValue Invoke(allDelegateInputRefAndOutParams);

public IAsyncResult BeginInvoke(allDelegateInputRefAndOutParams,
AsyncCallback cb, object state);

public delegateReturnValue EndInvoke(allDelegateRefAndOutParanms,
IAsyncResult result);

368

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

The System.MulticastDelegate and System.Delegate Base Classes

So, when you build a type using the C# delegate keyword, you are indirectly declaring a class type that
derives from System.MulticastDelegate. This class provides descendants with access to a list that contains
the addresses of the methods maintained by the delegate object, as well as several additional methods

(and a few overloaded operators) to interact with the invocation list. Here are some select members of
System.MulticastDelegate:

public abstract class MulticastDelegate : Delegate
{
// Returns the list of methods "pointed to."
public sealed override Delegate[] GetInvocationList();

// Overloaded operators.
public static bool operator ==(MulticastDelegate di, MulticastDelegate d2);
public static bool operator !=(MulticastDelegate di, MulticastDelegate d2);

// Used internally to manage the list of methods maintained by the delegate.
private IntPtr _invocationCount;
private object _invocationlist;

System.MulticastDelegate obtains additional functionality from its parent class, System.Delegate.
Here is a partial snapshot of the class definition:

public abstract class Delegate : ICloneable, ISerializable

{
// Methods to interact with the list of functions.
public static Delegate Combine(params Delegate[] delegates);
public static Delegate Combine(Delegate a, Delegate b);
public static Delegate Remove(Delegate source, Delegate value);
public static Delegate RemoveAll(Delegate source, Delegate value);

// Overloaded operators.
public static bool operator ==(Delegate di, Delegate d2);
public static bool operator !=(Delegate di, Delegate d2);

// Properties that expose the delegate target.
public MethodInfo Method { get; }
public object Target { get; }

Now, understand that you can never directly derive from these base classes in your code (it is a
compiler error to do so). Nevertheless, when you use the delegate keyword, you have indirectly created a
class that “is-a” MulticastDelegate. Table 10-1 documents the core members common to all delegate types.

369

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Table 10-1. Select Members of System.MulticastDelegate/System.Delegate

Member Meaning in Life

Method This property returns a System.Reflection.MethodInfo object that represents
details of a static method maintained by the delegate.

Target If the method to be called is defined at the object level (rather than a static
method), Target returns an object that represents the method maintained by
the delegate. If the value returned from Target equals null, the method to be
called is a static member.

Combine() This static method adds a method to the list maintained by the delegate. In
C#, you trigger this method using the overloaded += operator as a shorthand
notation.

GetInvocationList() This method returns an array of System.Delegate objects, each representing a
particular method that may be invoked.

Remove() RemoveAll() These static methods remove a method (or all methods) from the delegate’s
invocation list. In C#, the Remove () method can be called indirectly using the
overloaded - = operator.

The Simplest Possible Delegate Example

To be sure, delegates can cause some confusion when encountered for the first time. Thus, to get the ball
rolling, let’s take a look at a simple console application program (named SimpleDelegate) that makes use of
the BinaryOp delegate type you've seen previously. Here is the complete code, with analysis to follow:

namespace SimpleDelegate

{
// This delegate can point to any method,
// taking two integers and returning an integer.
public delegate int BinaryOp(int x, int y);

// This class contains methods BinaryOp will
// point to.
public class SimpleMath
{
public static int Add(int x, int y) => x + y;
public static int Subtract(int x, int y) => x - y;
}

class Program

{

static void Main(string[] args)

{

Console.WriteLine("***** Simple Delegate Example *¥¥**\n");
// Create a BinaryOp delegate object that

/1 "points to" SimpleMath.Add().
BinaryOp b = new BinaryOp(SimpleMath.Add);

370

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

// Invoke Add() method indirectly using delegate object.
Console.WriteLine("10 + 10 is {0}", b(10, 10));
Console.ReadLine();
}
}
}

Again, notice the format of the BinaryOp delegate type declaration; it specifies that BinaryOp delegate
objects can point to any method taking two integers and returning an integer (the actual name of the
method pointed to is irrelevant). Here, you have created a class named SimpleMath, which defines two static
methods that match the pattern defined by the BinaryOp delegate.

When you want to assign the target method to a given delegate object, simply pass in the name of the
method to the delegate’s constructor.

// Create a BinaryOp delegate object that
// "points to" SimpleMath.Add().
BinaryOp b = new BinaryOp(SimpleMath.Add);

At this point, you are able to invoke the member pointed to using a syntax that looks like a direct
function invocation.

// Invoke() is really called here!
Console.Writeline("10 + 10 is {o}", b(20, 10));

Under the hood, the runtime actually calls the compiler-generated Invoke () method on your
MulticastDelegate-derived class. You can verify this for yourself if you open your assembly in ildasm.exe
and examine the CIL code within the Main() method.

.method private hidebysig static void Main(string[] args) cil managed

{

callvirt instance int32 SimpleDelegate.BinaryOp::Invoke(int32, int32)

}

C# does not require you to explicitly call Invoke () within your codebase. Because BinaryOp can point to
methods that take two arguments, the following code statement is also permissible:

Console.WritelLine("10 + 10 is {0}", b.Invoke(10, 10));

Recall that .NET delegates are type-safe. Therefore, if you attempt to create a delegate object pointing
to a method that does not match the pattern, you receive a compile-time error. To illustrate, assume the
SimpleMath class now defines an additional method named SquareNumber (), which takes a single integer as
input.

public class SimpleMath
{

public static int SquareNumber(int a) => a * a;

}

371

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Given that the BinaryOp delegate can point only to methods that take two integers and return an integer,
the following code is illegal and will not compile:

// Compiler error! Method does not match delegate pattern!
BinaryOp b2 = new BinaryOp(SimpleMath.SquareNumber);

Investigating a Delegate Object

Let’s spice up the current example by creating a static method (named DisplayDelegateInfo()) within the
Program class. This method will print out the names of the methods maintained by a delegate object, as well
as the name of the class defining the method. To do this, you will iterate over the System.Delegate array
returned by GetInvocationList(), invoking each object’s Target and Method properties.

static void DisplayDelegateInfo(Delegate delObj)
{
// Print the names of each member in the
// delegate's invocation list.
foreach (Delegate d in delObj.GetInvocationList())
{
Console.WriteLine("Method Name: {0}", d.Method);
Console.WriteLine("Type Name: {0}", d.Target);
}
}

Assuming you have updated your Main() method to actually call this new helper method, as shown here:

BinaryOp b = new BinaryOp(SimpleMath.Add);
DisplayDelegateInfo(b);

you would find the output shown next:

Hrdkk Simple Delegate Example *ook*

Method Name: Int32 Add(Int32, Int32)
Type Name:
10 + 10 is 20

Notice that the name of the target class (SimpleMath) is currently not displayed when calling the Target
property. The reason has to do with the fact that your BinaryOp delegate is pointing to a static method and,
therefore, there is no object to reference! However, if you update the Add() and Subtract () methods to be
nonstatic (simply by deleting the static keywords), you could create an instance of the SimpleMath class
and specify the methods to invoke using the object reference.

static void Main(string[] args)

{

Console.WriteLine("***** Simple Delegate Example *¥¥*¥\n");
// .NET delegates can also point to instance methods as well.
SimpleMath m = new SimpleMath();

BinaryOp b = new BinaryOp(m.Add);

372

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

// Show information about this object.
DisplayDelegateInfo(b);

Console.Writeline("10 + 10 is {0}", b(10, 10));

Console.ReadLine();

In this case, you would find the output shown here:

*xxxx Simple Delegate Example ¥

Method Name: Int32 Add(Int32, Int32)
Type Name: SimpleDelegate.SimpleMath
10 + 10 is 20

Source Code You can find the SimpleDelegate project in the Chapter 10 subdirectory.

Sending Object State Notifications Using Delegates

Clearly, the previous SimpleDelegate example was intended to be purely illustrative in nature, given that
there would be no compelling reason to define a delegate simply to add two numbers. To provide a more
realistic use of delegate types, let’s use delegates to define a Car class that has the ability to inform external
entities about its current engine state. To do so, you will take the following steps:

1. Define a new delegate type that will be used to send notifications to the caller.
2. Declare a member variable of this delegate in the Car class.

3. Create a helper function on the Car that allows the caller to specify the method to
call back on.

4. Implement the Accelerate() method to invoke the delegate’s invocation list
under the correct circumstances.

To begin, create a new Console Application project named CarDelegate. Now, define a new Car class
that looks initially like this:

public class Car

{
// Internal state data.

public int CurrentSpeed { get; set; }
public int MaxSpeed { get; set; } = 100;
public string PetName { get; set; }

// Is the car alive or dead?
private bool carIsDead;

// Class constructors.
public Car() {}

373

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

public Car(string name, int maxSp, int currSp)

{
CurrentSpeed = currSp;
MaxSpeed = maxSp;
PetName = name;

}
}

Now, consider the following updates, which address the first three points:

public class Car

{

/71 1) Define a delegate type.
public delegate void CarEngineHandler(string msgForCaller);

/1 2) Define a member variable of this delegate.
private CarEngineHandler listOfHandlers;

/7 3) Add registration function for the caller.
public void RegisterWithCarEngine(CarEngineHandler methodToCall)
{

}
}

listOfHandlers = methodToCall,;

Notice in this example that you define the delegate types directly within the scope of the Car class,
which is certainly not necessary but does help enforce the idea that the delegate works naturally with this
particular class. The delegate type, CarEngineHandler, can point to any method taking a single string as
input and void as a return value.

Next, note that you declare a private member variable of your delegate type (named 1istOfHandlers)
and a helper function (named RegisterWithCarEngine()) that allows the caller to assign a method to the
delegate’s invocation list.

Note Strictly speaking, you could have defined your delegate member variable as public, therefore
avoiding the need to create additional registration methods. However, by defining the delegate member variable
as private, you are enforcing encapsulation services and providing a more type-safe solution. You'll revisit the
risk of public delegate member variables later in this chapter when you look at the C# event keyword.

At this point, you need to create the Accelerate() method. Recall, the point here is to allow a Car object
to send engine-related messages to any subscribed listener. Here is the update:

// 4) Implement the Accelerate() method to invoke the delegate's
1/ invocation list under the correct circumstances.
public void Accelerate(int delta)
{
// If this car is "dead," send dead message.
if (carIsDead)

374

{

}

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

if (listOfHandlers != null)
listOfHandlers("Sorry, this car is dead...");

else

{

CurrentSpeed += delta;

// Is this car "almost dead"?
if (10 == (MaxSpeed - CurrentSpeed) 88 listOfHandlers != null)

{
listOfHandlers("Careful buddy! Gonna blow!");

}
if (CurrentSpeed >= MaxSpeed)
carIsDead = true;
else
Console.WriteLine("CurrentSpeed = {0}", CurrentSpeed);

Notice that before you invoke the methods maintained by the 1istOfHandlers member variable, you

are checking it against a null value. The reason is that it will be the job of the caller to allocate these objects
by calling the RegisterWithCarEngine() helper method. If the caller does not call this method and you
attempt to invoke the delegate’s invocation list, you will trigger a Nul1lReferenceException at runtime. Now
that you have the delegate infrastructure in place, observe the updates to the Program class:

class Program

static void Main(string[] args)

{

Console.WriteLine("***** Delegates as event enablers *¥¥**\n");

// First, make a Car object.
Car c1 = new Car("SlugBug", 100, 10);

// Now, tell the car which method to call
// when it wants to send us messages.
cl.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent));

// Speed up (this will trigger the events).

Console.WriteLine("***** Speeding up *****");

for (int i = 0; i < 6; i++)
cl.Accelerate(20);

Console.ReadlLine();

375

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

// This is the target for incoming events.
public static void OnCarEngineEvent(string msg)
{
Console.WriteLine("\n***** Message From Car Object *¥¥**");

Console.WriteLine("=> {0}", msg);
Console.WriteLine("ikiokiortiotiomiickiokiotiotiorkickiokioiokioti\n ") 5

}
}

The Main() method begins by simply making a new Car object. Since you are interested
in hearing about the engine events, the next step is to call your custom registration function,
RegisterWithCarEngine(). Recall that this method expects to be passed an instance of the nested
CarEngineHandler delegate, and as with any delegate, you specify a “method to point to” as a constructor
parameter. The trick in this example is that the method in question is located back in the Program class!
Again, notice that the OnCarEngineEvent () method is a dead-on match to the related delegate in that it takes
a string as input and returns void. Consider the output of the current example:

*rRkk Delegates as event enablers *¥ik
kkskksk Speeding up k3kkk ok

CurrentSpeed = 30

CurrentSpeed = 50

CurrentSpeed = 70

HHRARK Message From Car Object *ook*
=> Careful buddy! Gonna blow!

skskok sk sk skok sk sk skok sk sk skok sk skokok sk skokok sk skokok sk skokok sk skokok
CurrentSpeed = 90

*¥xxx Message From Car Object ***x*

=> Sorry, this car is dead...
skokskook sk sk ok sk sk ok sk sk ok sk sk ok sk sk skok sk sk skok sk sk skok sk ok

Enabling Multicasting

Recall that .NET delegates have the built-in ability to multicast. In other words, a delegate object can
maintain a list of methods to call, rather than just a single method. When you want to add multiple methods
to a delegate object, you simply use the overloaded += operator, rather than a direct assignment. To enable
multicasting on the Car class, you could update the RegisterWithCarEngine()method, like so:

public class Car

{
// Now with multicasting support!

// Note we are now using the += operator, not
// the assignment operator (=).
public void RegisterWithCarEngine(CarEngineHandler methodToCall)

listOfHandlers += methodToCall;
}

376

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

When you use the += operator on a delegate object, the compiler resolves this to a call on the static
Delegate.Combine() method. In fact, you could call Delegate.Combine() directly; however, the += operator
offers a simpler alternative. There is no need to modify your current RegisterWithCarEngine() method, but
here is an example if using Delegate.Combine() rather than the += operator:

public void RegisterWithCarEngine(CarEngineHandler methodToCall)
{
if (listOfHandlers == null)
listOfHandlers = methodToCall;
else
listOfHandlers = Delegate.Combine(1listOfHandlers, methodToCall) as CarEngineHandler;

In any case, the caller can now register multiple targets for the same callback notification. Here, the
second handler prints the incoming message in uppercase, just for display purposes:

class Program
{
static void Main(string[] args)

{

Console.WriteLine("***** Delegates as event enablers *****\n");

// First, make a Car object.
Car c1 = new Car("SlugBug", 100, 10);

// Register multiple targets for the notifications.
cl.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent));
cl.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent2));

// Speed up (this will trigger the events).
Console.WriteLine("***** Speeding up *****");
for (int i = 0; 1 < 6; i++)
cl.Accelerate(20);
Console.ReadlLine();
}
// We now have TWO methods that will be called by the Car
// when sending notifications.
public static void OnCarEngineEvent(string msg)
{
Console.WriteLine("\n***** Message From Car Object *¥¥¥*");
Console.WriteLine("=> {0}", msg);
Console . writeLine ("***********************************\n ") ;

}

public static void OnCarEngineEvent2(string msg)

{
Console.WriteLine("=> {0}", msg.ToUpper());

}
}

377

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Removing Targets from a Delegate’s Invocation List

The Delegate class also defines a static Remove () method that allows a caller to dynamically remove a
method from a delegate object’s invocation list. This makes it simple to allow the caller to “unsubscribe”
from a given notification at runtime. While you could call Delegate.Remove() directly in code, C#
developers can use the -= operator as a convenient shorthand notation. Let’s add a new method to the Car
class that allows a caller to remove a method from the invocation list.

public class Car

{

public void UnRegisterWithCarEngine(CarEngineHandler methodToCall)

listOfHandlers -= methodToCall;

}
}

With the current updates to the Car class, you could stop receiving the engine notification on the second
handler by updating Main() as follows:

static void Main(string[] args)

{

Console.WriteLine("***** Delegates as event enablers *****\n");

// First, make a Car object.
Car c1 = new Car("SlugBug", 100, 10);
c1.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent));

// This time, hold onto the delegate object,

// so we can unregister later.

Car.CarEngineHandler handler2 = new Car.CarEngineHandler(OnCarEngineEvent2);
c1.RegisterWithCarEngine(handler2);

// Speed up (this will trigger the events).

Console.WriteLine("*¥**** Speeding up *¥k**");

for (int i = 0; i < 6; it++)
cl.Accelerate(20);

// Unregister from the second handler.
cl.UnRegisterWithCarEngine(handler2);

/71 We von't see the "uppercase"” message anymore!
Console.WriteLine("***** Speeding up *****");
for (int i = 0; 1 < 6; i++)

cl.Accelerate(20);

Console.ReadlLine();

}

378

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

One difference in Main() is that this time you are creating a Car.CarEngineHandler object and storing
itin a local variable so you can use this object to unregister with the notification later. Thus, the second time
you speed up the Car object, you no longer see the uppercase version of the incoming message data, as you
have removed this target from the delegate’s invocation list.

Source Code You can find the CarDelegate project in the Chapter 10 subdirectory.

Method Group Conversion Syntax

In the previous CarDelegate example, you explicitly created instances of the Car.CarEngineHandler delegate
object to register and unregister with the engine notifications.

static void Main(string[] args)

{

Console.WriteLine("***** Delegates as event enablers **<¥*\n");

Car c1 = new Car("SlugBug", 100, 10);
c1.RegisterWithCarEngine(new Car.CarEngineHandler(OnCarEngineEvent));

Car.CarEngineHandler handler2 =
new Car.CarEngineHandler(OnCarEngineEvent2);
cl.RegisterWithCarEngine(handler2);

To be sure, if you need to call any of the inherited members of MulticastDelegate or Delegate,
manually creating a delegate variable is the most straightforward way of doing so. However, in most cases,
you don't really need to hang onto the delegate object. Rather, you typically need to use the delegate object
only to pass in the method name as a constructor parameter.

As a simplification, C# provides a shortcut termed method group conversion. This feature allows you
to supply a direct method name, rather than a delegate object, when calling methods that take delegates as
arguments.

Note As you will see later in this chapter, you can also use method group conversion syntax to simplify
how you register with a C# event.

To illustrate, create a new Console Application project named CarDelegateMethodGroupConversion
and insert the file containing the Car class you defined in the CarDelegate project (and update the
namespace name in the Car. cs file to match your new namespace name). Now, consider the following
Program class, which uses method group conversion to register and unregister from the engine notifications:

class Program

{

static void Main(string[] args)

{
Console.WriteLine("***** Method Group Conversion *¥¥¥¥\n");
Car c1 = new Car();

379

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

// Register the simple method name.
cl.RegisterWithCarEngine(CallMeHere);

Console.WriteLine("***** Speeding up *****");
for (int i = 0; i < 6; i++)
cl.Accelerate(20);

// Unregister the simple method name.
cl.UnRegisterWithCarEngine(CallMeHere);

// No more notifications!
for (int i = 0; 1 < 6; i++)
cl.Accelerate(20);

Console.ReadLine();

}
static void CallMeHere(string msg)
{
Console.WriteLine("=> Message from Car: {0}", msg);
}
}

Notice that you are not directly allocating the associated delegate object but rather simply specifying a
method that matches the delegate’s expected signature (a method returning void and taking a single string,
in this case). Understand that the C# compiler is still ensuring type safety. Thus, if the CallMeHere () method
did not take a string and return void, you would be issued a compiler error.

Source Code You can find the CarDelegateMethodGroupConversion project in the Chapter 10 subdirectory.

Understanding Generic Delegates

In the previous chapter, | mentioned that C# allows you to define generic delegate types. For example,
assume you want to define a delegate type that can call any method returning void and receiving a single
parameter. If the argument in question may differ, you could model this using a type parameter. To illustrate,
consider the following code within a new Console Application project named GenericDelegate:

namespace GenericDelegate

{

// This generic delegate can represnet any method
// returning void and taking a single parameter of type T.
public delegate void MyGenericDelegate<T>(T arg);

class Program

{

static void Main(string[] args)

380

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Console.WriteLine("***** Generic Delegates **¥**\n");
// Register targets.
MyGenericDelegate<string> strTarget = new MyGenericDelegate<string>(StringTarget);

strTarget("Some string data");

MyGenericDelegate<int> intTarget = new MyGenericDelegate<int>(IntTarget);

intTarget(9);
Console.ReadlLine();
}
static void StringTarget(string arg)
{
Console.WriteLine("arg in uppercase is: {0}", arg.ToUpper());
}
static void IntTarget(int arg)
{
Console.WriteLine("++arg is: {0}", ++arg);
}

}
}

Notice that MyGenericDelegate<T> defines a single type parameter that represents the argument to pass
to the delegate target. When creating an instance of this type, you are required to specify the value of the type
parameter, as well as the name of the method the delegate will invoke. Thus, if you specified a string type,
you send a string value to the target method.

// Create an instance of MyGenericDelegate<T>

// with string as the type parameter.

MyGenericDelegate<string> strTarget = new MyGenericDelegate<string>(StringTarget);
strTarget("Some string data");

Given the format of the strTarget object, the StringTarget() method must now take a single string as
a parameter.

static void StringTarget(string arg)

{
}

Console.WriteLine("arg in uppercase is: {0}", arg.ToUpper());

Source Code You can find the GenericDelegate project in the Chapter 10 subdirectory.

381

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

The Generic Action<> and Func<> Delegates

Over the course of this chapter, you have seen that when you want to use delegates to enable callbacks in
your applications, you typically follow the steps shown here:

1. Define a custom delegate that matches the format of the method being
pointed to.

2. Create an instance of your custom delegate, passing in a method name as a
constructor argument.

3. Invoke the method indirectly, via a call to Invoke() on the delegate object.

When you take this approach, you typically end up with a number of custom delegates that might never
be used beyond the current task at hand (e.g., MyGenericDelegate<T>, CarEngineHandler, and so forth).
While it may certainly be the case that you do indeed need to have a custom, uniquely named delegate type
for your project, other times the exact name of the delegate type is irrelevant. In many cases, you simply want
“some delegate” that takes a set of arguments and possibly has a return value other than void. In these cases,
you can use the framework’s built-in Action<> and Func<> delegate types. To illustrate their usefulness,
create a new Console Application project named ActionAndFuncDelegates.

The generic Action<> delegate is defined in the System namespaces of the mscorlib.dll and
System.Core.dll assemblies. You can use this generic delegate to “point to” a method that takes up to
16 arguments (that ought to be enough!) and returns void. Now recall, because Action<> is a generic
delegate, you will need to specify the underlying types of each parameter as well.

Update your Program class to define a new static method that takes three (or so) unique parameters.
Here’s an example:

// This is a target for the Action<> delegate.
static void DisplayMessage(string msg, ConsoleColor txtColor, int printCount)

{

// Set color of console text.
ConsoleColor previous = Console.ForegroundColor;
Console.ForegroundColor = txtColor;

for (int i = 0; i < printCount; i++)

{
Console.WriteLine(msg);

}

// Restore color.
Console.ForegroundColor = previous;

Now, rather than building a custom delegate manually to pass the program’s flow to the
DisplayMessage() method, you can use the out-of-the-box Action<> delegate, as so:
static void Main(string[] args)

{

Console.WriteLine("***** Fun with Action and Func *¥*¥*");

382

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

// Use the Action<> delegate to point to DisplayMessage.

Action<string, ConsoleColor, int> actionTarget = new Action<string, ConsoleColor,
int>(DisplayMessage);

actionTarget("Action Message!", ConsoleColor.Yellow, 5);

Console.ReadLine();

As you can see, using the Action<> delegate saves you the bother of defining a custom delegate type.
However, recall that the Action<> delegate type can point only to methods that take a void return value.
If you want to point to a method that does have a return value (and don’t want to bother writing the custom
delegate yourself), you can use Func<>.

The generic Func<> delegate can point to methods that (like Action<>) take up to 16 parameters and a
custom return value. To illustrate, add the following new method to the Program class:

// Target for the Func<> delegate.
static int Add(int x, int y)
{

}

return x + y;

Earlier in the chapter, I had you build a custom BinaryOp delegate to “point to” addition and subtraction
methods. However, you can simplify your efforts using a version of Func<> that takes a total of three type
parameters. Be aware that the final type parameter of Func<> is always the return value of the method. Just to
solidify that point, assume the Program class also defines the following method:

static string SumToString(int x, int y)
{
return (x + y).ToString();

}

Now, the Main() method can call each of these methods, as so:

Func<int, int, int> funcTarget = new Func<int, int, int>(Add);
int result = funcTarget.Invoke(40, 40);
Console.WritelLine("40 + 40 = {0}", result);

Func<int, int, string> funcTarget2 = new Func<int, int, string>(SumToString);
string sum = funcTarget2(90, 300);
Console.WritelLine(sum);

Also recall that method group conversion syntax would allow you to simplify the previous code to the
following:

Func<int, int, int> funcTarget = Add;
int result = funcTarget.Invoke(40, 40);
Console.WritelLine("40 + 40 = {0}", result);

Func<int, int, string> funcTarget2 = SumToString;

string sum = funcTarget2(90, 300);
Console.WritelLine(sum);

383

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

In any case, given that Action<> and Func<> can save you the step of manually defining a custom
delegate, you might be wondering if you should use them all the time. The answer, like so many aspects of
programming, is “it depends.” In many cases, Action<> and Func<> will be the preferred course of action (no
pun intended). However, if you need a delegate that has a custom name that you feel helps better capture
your problem domain, building a custom delegate is as simple as a single code statement. You'll see both
approaches as you work over the remainder of this text.

Note Many important .NET APIs make considerable use of Action<> and Func<> delegates, including the
parallel programming framework and LINQ (among others).

That wraps up our initial look at the .NET delegate type. You will look at some additional details of
working with delegates at the conclusion of this chapter and again in Chapter 19 during your examination of
multithreading and asynchronous calls. Next, let’s move on to the related topic of the C# event keyword.

Source Code You can find the ActionAndFuncDelegates project in the Chapter 10 subdirectory.

Understanding C# Events

Delegates are fairly interesting constructs in that they enable objects in memory to engage in a two-way
conversation. However, working with delegates in the raw can entail the creation of some boilerplate
code (defining the delegate, declaring necessary member variables, and creating custom registration and
unregistration methods to preserve encapsulation, etc.).

Moreover, when you use delegates in the raw as your application’s callback mechanism, if you do
not define a class’s delegate member variables as private, the caller will have direct access to the delegate
objects. In this case, the caller could reassign the variable to a new delegate object (effectively deleting the
current list of functions to call), and, worse yet, the caller would be able to directly invoke the delegate’s
invocation list. To illustrate this problem, consider the following reworking (and simplification) of the Car
class from the previous CarDelegate example:

public class Car

{
public delegate void CarEngineHandler(string msgForCaller);

// Now a public member!
public CarEngineHandler listOfHandlers;

// Just fire out the Exploded notification.
public void Accelerate(int delta)

{
if (listOfHandlers != null)
listOfHandlers("Sorry, this car is dead...");

384

http://dx.doi.org/10.1007/978-1-4842-3018-3_19
http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Notice that you no longer have private delegate member variables encapsulated with custom
registration methods. Because these members are indeed public, the caller can directly access the
listOfHandlers member variable and reassign this type to new CarEngineHandler objects and invoke the
delegate whenever it so chooses.

class Program

{

static void Main(string[] args)

{
Console.WriteLine("***** Agh! No Encapsulation! *¥¥*k\n");
// Make a Car.
Car myCar = new Car();
// We have direct access to the delegate!
myCar.listOfHandlers = new Car.CarEngineHandler(CallWhenExploded);
myCar.Accelerate(10);
// We can now assign to a whole new object...
// confusing at best.
myCar.listOfHandlers = new Car.CarEngineHandler(CallHereToo);
myCar.Accelerate(10);
// The caller can also directly invoke the delegate!
myCar.listOfHandlers.Invoke("hee, hee, hee...");
Console.ReadlLine();

}

static void CallWhenExploded(string msg)
{ Console.WritelLine(msg); }

static void CallHereToo(string msg)
{ Console.WritelLine(msg); }

Exposing public delegate members breaks encapsulation, which not only can lead to code that is hard
to maintain (and debug) but could also open your application to possible security risks! Here is the output of
the current example:

*rkkEk Agh! No Encapsulation! ok

Sorry, this car is dead...
Sorry, this car is dead...
hee, hee, hee...

Obviously, you would not want to give other applications the power to change what a delegate is
pointing to or to invoke the members without your permission. Given this, it is common practice to declare
private delegate member variables.

Source Code You can find the PublicDelegateProblem project in the Chapter 10 subdirectory.

385

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

The C# event Keyword

As a shortcut, so you don’t have to build custom methods to add or remove methods to a delegate’s
invocation list, C# provides the event keyword. When the compiler processes the event keyword, you are
automatically provided with registration and unregistration methods, as well as any necessary member
variables for your delegate types. These delegate member variables are always declared private, and,
therefore, they are not directly exposed from the object firing the event. To be sure, the event keyword can
be used to simplify how a custom class sends out notifications to external objects.

Defining an event is a two-step process. First, you need to define a delegate type (or reuse an existing
one) that will hold the list of methods to be called when the event is fired. Next, you declare an event
(using the C# event keyword) in terms of the related delegate type.

To illustrate the event keyword, create a new console application named CarEvents. In this iteration of
the Car class, you will define two events named AboutToBlow and Exploded. These events are associated to a
single delegate type named CarEngineHandler. Here are the initial updates to the Car class:

public class Car
{
// This delegate works in conjunction with the
// Car's events.
public delegate void CarEngineHandler(string msg);

// This car can send these events.
public event CarEngineHandler Exploded;
public event CarEngineHandler AboutToBlow;

Sending an event to the caller is as simple as specifying the event by name, along with any required
parameters as defined by the associated delegate. To ensure that the caller has indeed registered with the
event, you will want to check the event against a null value before invoking the delegate’s method set. With
these points in mind, here is the new iteration of the Car’s Accelerate() method:

public void Accelerate(int delta)

{
/! 1f the car is dead, fire Exploded event.

if (carIsDead)

{ if (Exploded != null)
Exploded("Sorry, this car is dead...");
}
else
{

CurrentSpeed += delta;

// Almost dead?
if (10 == MaxSpeed - CurrentSpeed
88 AboutToBlow != null)

{
AboutToBlow("Careful buddy! Gonna blow!");

}

386

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

// Still OK!
if (CurrentSpeed >= MaxSpeed)
carIsDead = true;
else
Console.WriteLine("CurrentSpeed = {0}", CurrentSpeed);

With this, you have configured the car to send two custom events without having to define custom
registration functions or declare delegate member variables. You will see the usage of this new automobile in
just a moment, but first let’s check the event architecture in a bit more detail.

Events Under the Hood

When the compiler processes the C# event keyword, it generates two hidden methods, one having an

add_ prefix and the other having a remove_ prefix. Each prefix is followed by the name of the C# event.

For example, the Exploded event results in two hidden methods named add_Exploded() and remove
Exploded(). If you were to check out the CIL instructions behind add_AboutToBlow(), you would find a call
to the Delegate.Combine() method. Consider the partial CIL code:

.method public hidebysig specialname instance void
add_AboutToBlow(class CarEvents.Car/CarEngineHandler 'value') cil managed

{

call class [mscorlib]System.Delegate
[mscorlib]System.Delegate: :Combine(
class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

As you would expect, remove_AboutToBlow() will call Delegate.Remove() on your behalf.

.method public hidebysig specialname instance void
remove_AboutToBlow(class CarEvents.Car/CarEngineHandler 'value')
cil managed

{

call class [mscorlib]System.Delegate
[mscorlib]System.Delegate: :Remove(
class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

Finally, the CIL code representing the event itself makes use of the .addon and .removeon directives to
map the names of the correct add_XXX() and remove XXX() methods to invoke.

387

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

.event CarEvents.Car/EngineHandler AboutToBlow

{
.addon instance void CarEvents.Car::add_AboutToBlow
(class CarEvents.Car/CarEngineHandler)
.removeon instance void CarEvents.Car::remove AboutToBlow
(class CarEvents.Car/CarEngineHandler)
}

Now that you understand how to build a class that can send C# events (and are aware that events are
little more than a typing time-saver), the next big question is how to listen to the incoming events on the
caller’s side.

Listening to Incoming Events

C# events also simplify the act of registering the caller-side event handlers. Rather than having to specify
custom helper methods, the caller simply uses the += and -= operators directly (which triggers the correct
add_XXX() or remove_XXX() method in the background). When you want to register with an event, follow the
pattern shown here:

// NameOfObject.NameOfEvent += new RelatedDelegate(functionToCall);

//

Car.CarEngineHandler d = new Car.CarEngineHandler(CarExplodedEventHandler);
myCar.Exploded += d;

When you want to detach from a source of events, use the -= operator, using the following pattern:

// NameOfObject.NameOfEvent -= new RelatedDelegate(functionToCall);
/7
myCar.Exploded -= d;

Given these very predictable patterns, here is the refactored Main() method, now using the C# event
registration syntax:

class Program

{

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Events *®¥¥¥\n");
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers.
c1.AboutToBlow += new Car.CarEngineHandler(CarIsAlmostDoomed);
c1.AboutToBlow += new Car.CarEngineHandler(CarAboutToBlow);

Car.CarEngineHandler d = new Car.CarEngineHandler(CarExploded);
cl.Exploded += d;

Console.Writeline("***** Speeding up **#**");

for (int i = 0; 1 < 6; i++)
cl.Accelerate(20);

388

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

// Remove CarkExploded method
// from invocation list.
cl.Exploded -= d;

Console.WriteLine("\n*¥*** Speeding up *¥¥**x"):
for (int i = 0; 1 < 6; i++)

cl.Accelerate(20);
Console.ReadlLine();

}

public static void CarAboutToBlow(string msg)
{ Console.WritelLine(msg); }

public static void CarIsAlmostDoomed(string msg)
{ Console.Writeline("=> Critical Message from Car: {0}", msg); }

public static void CarExploded(string msg)
{ Console.WritelLine(msg); }

To even further simplify event registration, you can use method group conversion. Consider the
following iteration of Main():

static void Main(string[] args)
{
Console.Writeline("***** Fyn with Events *¥¥¥¥\n");
Car c1 = new Car("SlugBug", 100, 10);
// Register event handlers.
c1.AboutToBlow += CarIsAlmostDoomed;
c1.AboutToBlow += CarAboutToBlow;
cl.Exploded += CarExploded;

Console.Writeline("**¥** Speeding up **¥*k*");
for (int i = 0; 1 < 6; i++)
cl.Accelerate(20);

cl.Exploded -= CarExploded;

Console.Writeline("\n***¥* Speeding up ***¥*");
for (int i = 0; i < 6; i++)
cl.Accelerate(20);

Console.ReadlLine();

}

Simplifying Event Registration Using Visual Studio

Visual Studio offers assistance with the process of registering event handlers. When you apply the += syntax
during event registration, you will find an IntelliSense window displayed, inviting you to hit the Tab key to
autocomplete the associated delegate instance (see Figure 10-2), which is captured using method group
conversion syntax.

389

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

(5] CarEvents
—x

32
33
34

37

39
48

42
43
44
45
46
47
48
49
50
51
52
53

1W00% =

35 &

38 =

41 =

- | %% cartventsProgram

COTTITIT T INEWH LTS

}

#region Event handlers

public static void CarAboutToBlow(string msg)

{ Console.WriteLine(msg); }

public static void CarIsAlmostDoomed(string msg)
{ Console.WriteLine("=> Critical Message from Car: {@}", msg); }

public static void CarExploded(string msg)
{ Console.WriteLine(msg); }
#endregion

public static void HookIntoEvents()

{
Car newCar = new Car();
newcCar.AboutToBlow +%I
} NewCar AboutToBlow; (Press TAB to insert)

Figure 10-2. Delegate selection IntelliSense

~| @ HookintoEvents(

ol

After you hit the Tab key, the IDE will generate the new method automatically, as shown in Figure 10-3.

i Carvents
32
33
a4
35 s
36
37
38
39
49
41 &
43
45
46
47

4 48
49
58
51
52
53
54
55
56 |}

% -

= | % Cartvenits Program
LT e RSy 2

}

#region Event handlers
public static void CarAboutToBlow(string msg)
{ Console.WriteLine(msg); }

public static void CarIsAlmostDoomed(string msg)
{ Console.WriteLine("=> Critical Message from Car: {8}", msg); }

public static void CarExploded{ string msg)
{ Console.WriteLine(msg); }
#endregion

public static void HookIntoEvents()

{
Car newCar = new Car();
newCar.AboutToBlow += NAHCArLAGOUETOBION;
}

private static void NewCar_AboutToBlow(string msgForCaller)
{

}

throw new NotImplementedException();

-| @ Hookintotventsd

Rename: NewCar_AboutToBlow = ;
HModly cny o bogk =
[Inchade commants
[Inchude sirings:
[Preview changes
IRename will update 2 references in 1 e,

Apply

Figure 10-3. Delegate target format IntelliSense

390

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Note the stub code is in the correct format of the delegate target (note that this method has been
declared static because the event was registered within a static method).

static void NewCar AboutToBlow(string msg)

{
// Delete the following line and add your code!
throw new NotImplementedException();

}

IntelliSense is available to all .NET events in the base class libraries. This IDE feature is a massive
time-saver, given that it saves you from having to search the .NET help system to figure out both the correct
delegate to use with a particular event and the format of the delegate target method.

Cleaning Up Event Invocation Using the C# 6.0 Null-Conditional
Operator

In the current example, you most likely noticed that before you fired an event to any listener, you made sure
to check for null. This is important given that if nobody is listening for your event but you fire it anyway, you
will receive a null reference exception at runtime. While important, you might agree it is a bit clunky to make
numerous conditional checks against null.

Thankfully, ever since the release of C# 6, you can leverage the null conditional operator (?), which
essentially performs this sort of check automatically. Be aware, when using this new simplified syntax, you
must manually call the Invoke() method of the underlying delegate. For example, rather than saying this:

// If the car is dead, fire Exploded event.
if (carIsDead)

{
if (Exploded != null)
Exploded("Sorry, this car is dead...");
}

you can now simply say the following:

// If the car is dead, fire Exploded event.
if (carIsDead)

Exploded?.Invoke("Sorry, this car is dead...");

You could also update the code that fires the AboutToBlow event in a similar manner (note here I moved
the check for null out of the original if statement):
// Almost dead?
if (10 == MaxSpeed - CurrentSpeed)

{
}

AboutToBlow?.Invoke("Careful buddy! Gonna blow!");

Because of the simplified syntax, you are likely to favor the null conditional operator when firing events.
However, it is still perfectly acceptable to manually check for null when necessary.

391

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Source Code You can find the CarEvents project in the Chapter 10 subdirectory.

Creating Custom Event Arguments

Truth be told, there is one final enhancement you could make to the current iteration of the Car class that
mirrors Microsoft’s recommended event pattern. As you begin to explore the events sent by a given type in
the base class libraries, you will find that the first parameter of the underlying delegate is a System.Object,
while the second parameter is a descendant of System.EventArgs.

The System.Object argument represents a reference to the object that sent the event (such as the Car),
while the second parameter represents information regarding the event at hand. The System.EventArgs
base class represents an event that is not sending any custom information.

public class EventArgs

{
public static readonly EventArgs Empty;

public EventArgs();
}

For simple events, you can pass an instance of EventArgs directly. However, when you want to pass
along custom data, you should build a suitable class deriving from EventArgs. For this example, assume you
have a class named CarEventArgs, which maintains a string representing the message sent to the receiver.

public class CarEventArgs : EventArgs

{

public readonly string msg;
public CarEventArgs(string message)

{
msg = message;
}
}

With this, you would now update the CarEngineHandler delegate type definition as follows (the events
would be unchanged):

public class Car

public delegate void CarEngineHandler(object sender, CarEventArgs e);

Here, when firing the events from within the Accelerate() method, you would now need to supply a
reference to the current Car (via the this keyword) and an instance of the CarEventArgs type. For example,
consider the following partial update:

public void Accelerate(int delta)
{

// If the car is dead, fire Exploded event.
if (carIsDead)

392

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

{

Exploded?.Invoke(this, new CarEventArgs("Sorry, this car is dead..."));

}

On the caller’s side, all you would need to do is update your event handlers to receive the incoming
parameters and obtain the message via the read-only field. Here’s an example:

public static void CarAboutToBlow(object sender, CarEventArgs e)

{
}

Console.WriteLine("{0} says: {1}", sender, e.msg);

If the receiver wants to interact with the object that sent the event, you can explicitly cast the System.
Object. From this reference, you can make use of any public member of the object that sent the event
notification.

public static void CarAboutToBlow(object sender, CarEventArgs e)
{
// Just to be safe, perform a
// runtime check before casting.
if (sender is Car c)
{
Console.WriteLine("Critical Message from {0}: {1}", c.PetName, e.msg);
}
}

Source Code You can find the CarEventArgs project in the Chapter 10 subdirectory.

The Generic EventHandler<T> Delegate

Given that so many custom delegates take an object as the first parameter and an EventArgs descendant as
the second, you could further streamline the previous example by using the generic EventHandler<T> type,
where T is your custom EventArgs type. Consider the following update to the Car type (notice how you no
longer need to define a custom delegate type at all):

public class Car

{

public event EventHandler<CarEventArgs> Exploded;
public event EventHandler<CarEventArgs> AboutToBlow;

}

The Main() method could then use EventHandler<CarEventArgs> anywhere you previously specified
CarEventHandler (or, once again, use method group conversion).

393

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

static void Main(string[] args)

{

Console.WriteLine("***** prim and Proper Events *¥¥*¥\n");

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers.
c1.AboutToBlow += CarIsAlmostDoomed;
c1l.AboutToBlow += CarAboutToBlow;

EventHandler<CarEventArgs> d = new EventHandler<CarEventArgs>(CarExploded);
cl.Exploded += d;

Great! At this point, you have seen the core aspects of working with delegates and events in the C#
language. While you could use this information for just about all your callback needs, you will wrap up this
chapter with a look at some final simplifications, specifically anonymous methods and lambda expressions.

Source Code You can find the GenericCarEventArgs project in the Chapter 10 subdirectory.

Understanding C# Anonymous Methods

Asyou have seen, when a caller wants to listen to incoming events, it must define a custom method in a class
(or structure) that matches the signature of the associated delegate. Here’s an example:

class Program

{

static void Main(string[] args)

{
SomeType t = new SomeType();

// Assume "SomeDelegate" can point to methods taking no
// args and returning void.
t.SomeEvent += new SomeDelegate(MyEventHandler);

}

// Typically only called by the SomeDelegate object.
public static void MyEventHandler()

{

// Do something when event is fired.

}
}

394

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

When you think about it, however, methods such as MyEventHandler () are seldom intended to be
called by any part of the program other than the invoking delegate. As far as productivity is concerned, it is
a bit of a bother (though in no way a showstopper) to manually define a separate method to be called by the
delegate object.

To address this point, it is possible to associate an event directly to a block of code statements at the
time of event registration. Formally, such code is termed an anonymous method. To illustrate the syntax,
check out the following Main() method, which handles the events sent from the Car class using anonymous
methods, rather than specifically named event handlers:

class Program

{
static void Main(string[] args)
{
Console.WriteLine("***** Anonymous Methods ***¥*\n");
Car c1 = new Car("SlugBug", 100, 10);
// Register event handlers as anonymous methods.
c1.AboutToBlow += delegate
{
Console.WriteLine("Eek! Going too fast!");
};
c1.AboutToBlow += delegate(object sender, CarEventArgs e)
{
Console.WriteLine("Message from Car: {0}", e.msg);
};
cl.Exploded += delegate(object sender, CarEventArgs e)
{
Console.WriteLine("Fatal Message from Car: {0}", e.msg);
};
// This will eventually trigger the events.
for (int i = 0; 1 < 6; i++)
cl.Accelerate(20);
Console.ReadlLine();
}
}

Note The final curly bracket of an anonymous method must be terminated by a semicolon. If you fail to do
S0, you are issued a compilation error.

395

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Again, notice that the Program type no longer defines specific static event handlers such as
CarAboutToBlow() or CarExploded(). Rather, the unnamed (aka anonymous) methods are defined inline
at the time the caller is handling the event using the += syntax. The basic syntax of an anonymous method
matches the following pseudocode:

class Program
{
static void Main(string[] args)
{
SomeType t = new SomeType();
t.SomeEvent += delegate (optionallySpecifiedDelegateArgs)
{ /* statements */ };
}
}

When handling the first About ToBlow event within the previous Main() method, notice that you are not
specifying the arguments passed from the delegate.

cl.AboutToBlow += delegate

{

Console.WriteLine("Eek! Going too fast!");

};

Strictly speaking, you are not required to receive the incoming arguments sent by a specific event.
However, if you want to make use of the possible incoming arguments, you will need to specify the
parameters prototyped by the delegate type (as shown in the second handling of the AboutToBlow and
Exploded events). Here’s an example:

c1.AboutToBlow += delegate(object sender, CarEventArgs e)

{

Console.WriteLine("Critical Message from Car: {0}", e.msg);

};

Accessing Local Variables

Anonymous methods are interesting in that they are able to access the local variables of the method that
defines them. Formally speaking, such variables are termed outer variables of the anonymous method. A few
important points about the interaction between an anonymous method scope and the scope of the defining
method should be mentioned.

e Ananonymous method cannot access ref or out parameters of the defining method.

e Ananonymous method cannot have a local variable with the same name as a local
variable in the outer method.

e Ananonymous method can access instance variables (or static variables, as
appropriate) in the outer class scope.

e Ananonymous method can declare local variables with the same name as outer
class member variables (the local variables have a distinct scope and hide the outer
class member variables).

396

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Assume your Main() method defined a local integer named aboutToBlowCounter. Within the
anonymous methods that handle the AboutToBlow event, you will increment this counter by one and print
out the tally before Main() completes.

static void Main(string[] args)

{
Console.WritelLine("***** Anonymous Methods *****\n");
int aboutToBlowCounter = 0;

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers as anonymous methods.
cl.AboutToBlow += delegate
{

aboutToBlowCounter++;

Console.Writeline("Eek! Going too fast!");

};

c1.AboutToBlow += delegate(object sender, CarEventArgs e)
{
aboutToBlowCounter++;
Console.WriteLine("Critical Message from Car: {0}", e.msg);

};

// This will eventually trigger the events.
for (int i = 0; 1 < 6; i++)
cl.Accelerate(20);

Console.WriteLine("AboutToBlow event was fired {0} times.",
aboutToBlowCounter);
Console.ReadlLine();

}

After you run this updated Main() method, you will find the final Console.WriteLine() reports the
AboutToBlow event was fired twice.

Source Code You can find the AnonymousMethods project in the Chapter 10 subdirectory.

Understanding Lambda Expressions

To conclude your look at the .NET event architecture, you will examine C# lambda expressions. As just
explained, C# supports the ability to handle events “inline” by assigning a block of code statements directly
to an event using anonymous methods, rather than building a stand-alone method to be called by the
underlying delegate. Lambda expressions are nothing more than a concise way to author anonymous
methods and ultimately simplify how you work with the .NET delegate type.

397

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

To set the stage for your examination of lambda expressions, create a new Console Application project
named SimpleLambdaExpressions. To begin, consider the FindA11() method of the generic List<T> class.
This method can be called when you need to extract a subset of items from the collection and is prototyped
like so:

// Method of the System.Collections.Generic.List<T> class.
public List<T> FindAll(Predicate<T> match)

Asyou can see, this method returns a new List<T> that represents the subset of data. Also notice that
the sole parameter to FindAl1() is a generic delegate of type System.Predicate<T>. This delegate type can
point to any method returning a bool and takes a single type parameter as the only input parameter.

// This delegate is used by FindAll() method
// to extract out the subset.
public delegate bool Predicate<T>(T obj);

When you call FindAl1(), each item in the List<T> is passed to the method pointed to by the
Predicate<T> object. The implementation of said method will perform some calculations to see whether the
incoming data matches the necessary criteria and will return true or false. If this method returns true, the
item will be added to the new List<T> that represents the subset (got all that?).

Before you see how lambda expressions can simplify working with FindA11(), let's work the
problem out in longhand notation, using the delegate objects directly. Add a method (named
TraditionalDelegateSyntax()) within your Program type that interacts with the System.Predicate<T> type
to discover the even numbers in a List<T> of integers.

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Lambdas *****\n");
TraditionalDelegateSyntax();
Console.ReadLine();

}

static void TraditionalDelegateSyntax()

{
// Make a list of integers.
List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// Call FindAll() using traditional delegate syntax.
Predicate<int> callback = IsEvenNumber;
List<int> evenNumbers = list.FindAll(callback);

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)

{

Console.Write("{o}\t", evenNumber);

}

Console.WriteLine();

398

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

/1 Target for the Predicate<» delegate.
static bool IsEvenNumber(int i)
{
// Is it an even number?
return (i % 2) == 0;
}
}

Here, you have a method (IsEvenNumber ()) that is in charge of testing the incoming integer parameter
to see whether it is even or odd via the C# modulo operator, %. If you execute your application, you will find
the numbers 20, 4, 8, and 44 print to the console.

While this traditional approach to working with delegates behaves as expected, the IsEvenNumber ()
method is invoked only in limited circumstances—specifically when you call FindA11(), which leaves you
with the baggage of a full method definition. If you were to instead use an anonymous method, your code
would clean up considerably. Consider the following new method of the Program class:

static void AnonymousMethodSyntax()

{
/1 Make a list of integers.
List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// Now, use an anonymous method.
List<int> evenNumbers = list.FindAll(delegate(int i)
{ return (i % 2) ==0; });

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)
{

Console.Write("{0}\t", evenNumber);

}

Console.WritelLine();

In this case, rather than directly creating a Predicate<T> delegate object and then authoring a stand-
alone method, you are able to inline a method anonymously. While this is a step in the right direction, you
are still required to use the delegate keyword (or a strongly typed Predicate<T>), and you must ensure that
the parameter list is a dead-on match.

List<int> evenNumbers = list.FindAll(
delegate(int 1)

return (i % 2) == 0;

}
)5

399

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Lambda expressions can be used to simplify the call to FindA11() even more. When you use lambda
syntax, there is no trace of the underlying delegate object whatsoever. Consider the following new method to
the Program class:

static void LambdaExpressionSyntax()

{
// Make a list of integers.

List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// Now, use a C# lambda expression.
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)

{
}

Console.WriteLine();

Console.Write("{0}\t", evenNumber);

In this case, notice the rather strange statement of code passed into the FindA11() method, which is in
fact alambda expression. In this iteration of the example, there is no trace whatsoever of the Predicate<T>
delegate (or the delegate keyword, for that matter). All you have specified is the lambda expression.

i=> (1%2) ==

Before I break this syntax down, first understand that lambda expressions can be used anywhere you
would have used an anonymous method or a strongly typed delegate (typically with far fewer keystrokes).
Under the hood, the C# compiler translates the expression into a standard anonymous method making use
of the Predicate<T> delegate type (which can be verified using i1dasm.exe or reflector.exe). Specifically,
the following code statement:

// This lambda expression...
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

is compiled into the following approximate C# code:

// ...becomes this anonymous method.
List<int> evenNumbers = list.FindAll(delegate (int i)

{

return (i % 2) == 0;

};

Dissecting a Lambda Expression

Alambda expression is written by first defining a parameter list, followed by the => token (C#’s token for the
lambda operator found in the lambda calculus), followed by a set of statements (or a single statement) that
will process these arguments. From a high level, a lambda expression can be understood as follows:

ArgumentsToProcess => StatementsToProcessThem

400

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Within the LambdaExpressionSyntax () method, things break down like so:

// "i" is our parameter list.
/7 "(1i % 2) == 0" is our statement set to process "i".
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

The parameters of alambda expression can be explicitly or implicitly typed. Currently, the underlying
data type representing the i parameter (an integer) is determined implicitly. The compiler is able to figure
out that i is an integer based on the context of the overall lambda expression and the underlying delegate.
However, it is also possible to explicitly define the type of each parameter in the expression by wrapping the
data type and variable name in a pair of parentheses, as follows:

// Now, explicitly state the parameter type.
List<int> evenNumbers = list.FindAll((int i) => (i % 2) == 0);

Asyou have seen, if alambda expression has a single, implicitly typed parameter, the parentheses may
be omitted from the parameter list. If you want to be consistent regarding your use of lambda parameters,
you can always wrap the parameter list within parentheses, leaving you with this expression:

List<int> evenNumbers = list.FindAl1((i) => (i % 2) == 0);

Finally, notice that currently the expression has not been wrapped in parentheses (you have of course
wrapped the modulo statement to ensure it is executed first before the test for equality). Lambda expressions
do allow for the statement to be wrapped as follows:

// Now, wrap the expression as well.
List<int> evenNumbers = list.FindAll((i) => ((i % 2) == 0));

Now that you have seen the various ways to build a lambda expression, how can you read this lambda
statement in human-friendly terms? Leaving the raw mathematics behind, the following explanation fits the
bill:

// My list of parameters (in this case, a single integer named i)
// will be processed by the expression (i % 2) == 0.
List<int> evenNumbers = list.FindAll((i) => ((i % 2) == 0));

Processing Arguments Within Multiple Statements

The first lambda expression was a single statement that ultimately evaluated to a Boolean. However, as

you know, many delegate targets must perform a number of code statements. For this reason, C# allows

you to build lambda expressions using multiple statement blocks. When your expression must process the
parameters using multiple lines of code, you can do so by denoting a scope for these statements using the
expected curly brackets. Consider the following example update to the LambdaExpressionSyntax() method:

static void LambdaExpressionSyntax()

{
// Make a list of integers.

List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

401

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

// Now process each argument within a group of

// code statements.

List<int> evenNumbers = list.FindAl1((i) =>

{
Console.WriteLine("value of i is currently: {0}", i);
bool iskven = ((i % 2) == 0);
return isEven;

};

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)

{
Console.Write("{o}\t", evenNumber);

}

Console.WriteLine();

In this case, the parameter list (again, a single integer named 1) is being processed by a set of code

statements. Beyond the calls to Console.WritelLine(), the modulo statement has been broken into two

co

de statements for increased readability. Assuming each of the methods you've looked at in this section are

called from within Main():

st
{

}
Yo

k%

He
20
He
20
va
va
va
va
va
va
He
20

atic void Main(string[] args)

Console.WriteLine("***** Fun with Lambdas **¥¥*¥\n");
TraditionalDelegateSyntax();
AnonymousMethodSyntax();

Console.WriteLine();

LambdaExpressionSyntax();

Console.ReadLine();

u will find the following output:
*4% Fun with Lambdas *****
Te are your even numbers:
4 8 44
Te are your even numbers:
4 8 44
lue of i is currently: 20
lue of i is currently: 1
lue of i is currently: 4
lue of i is currently: 8
lue of i is currently: 9
lue of i is currently: 44

re are your even numbers:
4 8 44

Source Code You can find the SimpleLambdaExpressions project in the Chapter 10 subdirectory.

402

http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Lambda Expressions with Multiple (or Zero) Parameters

The lambda expressions you have seen in this chapter so far processed a single parameter. This is not a
requirement, however, as a lambda expression may process multiple arguments (or none). To illustrate
the first scenario, create a Console Application project named LambdaExpressionsMultipleParams. Next,
assume the following incarnation of the SimpleMath type:

public class SimpleMath
{

public delegate void MathMessage(string msg, int result);
private MathMessage mmDelegate;

public void SetMathHandler(MathMessage target)
{mmDelegate = target; }

public void Add(int x, int y)

{
mmDelegate?.Invoke("Adding has completed!", x + y);

}
}

Notice that the MathMessage delegate type is expecting two parameters. To represent them as a lambda
expression, the Main() method might be written as follows:

static void Main(string[] args)

{
// Register with delegate as a lambda expression.
SimpleMath m = new SimpleMath();
m.SetMathHandler((msg, result) =>
{Console.WritelLine("Message: {0}, Result: {1}", msg, result);});
// This will execute the lambda expression.
m.Add(10, 10);
Console.ReadLine();
}

Here, you are leveraging type inference, as the two parameters have not been strongly typed for
simplicity. However, you could call SetMathHandler (), as follows:

m.SetMathHandler((string msg, int result) =>
{Console.WritelLine("Message: {0}, Result: {1}", msg, result);});

Finally, if you are using a lambda expression to interact with a delegate taking no parameters at all, you
may do so by supplying a pair of empty parentheses as the parameter. Thus, assuming you have defined the

following delegate type:

public delegate string VerySimpleDelegate();

403

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

you could handle the result of the invocation as follows:

// Prints "Enjoy your string!" to the console.
VerySimpleDelegate d = new VerySimpleDelegate(() => {return "Enjoy your string!";});
Console.WriteLine(d());

Source Code You can find the LambdaExpressionsMultipleParams project in the Chapter 10 subdirectory.

Retrofitting the CarEvents Example Using Lambda Expressions

Given that the whole reason for lambda expressions is to provide a clean, concise manner to define an
anonymous method (and therefore indirectly a manner to simplify working with delegates), let’s retrofit the
CarEventArgs project created earlier in this chapter. Here is a simplified version of that project’s Program
class, which makes use of lambda expression syntax (rather than the raw delegates) to hook into each event
sent from the Car object:

static void Main(string[] args)

{

Console.WriteLine("***** More Fun with Lambdas ***¥¥\n");

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Hook into events with lambdas!
c1.AboutToBlow += (sender, e) => { Console.Writeline(e.msg);};
cl.Exploded += (sender, e) => { Console.WriteLine(e.msg); };

// Speed up (this will generate the events).
Console.WriteLine("\n**¥** Speeding up *****"):
for (int i = 0; i < 6; it++)

cl.Accelerate(20);

Console.ReadLine();

}

Lambdas and Expression-Bodied Members (Updated)

Now that you understand lambda expressions and how they work, it should be much clearer how
expression-bodied members work under the covers. As mentioned in Chapter 4, as of C# 6, it is permissible
to use the => operator to simplify some (but not all) member implementations. Specifically, if you have a
method or property (in addition to a custom operator or conversion routine; see Chapter 11) that consists of
exactly a single line of code in the implementation, you are not required to define a scope via curly bracket.
You can instead leverage the lambda operator and write an expression-bodied member. In C# 7, you can
also use this syntax for class constructors, finalizers (covered in Chapter 13), and get and set accessors on
property members.

404

http://dx.doi.org/10.1007/978-1-4842-3018-3_10
http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_11
http://dx.doi.org/10.1007/978-1-4842-3018-3_13

CHAPTER 10 ' DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Consider the previous code example where you wired in code to handle the AboutToBlow and Exploded
events. Note how you defined a curly-bracket scope to capture the Console.WritelLine() method calls. If
you like, you could now simply write the following:

c1.AboutToBlow += (sender, e) => Console.WriteLine(e.msg);
cl.Exploded += (sender, e) => Console.WritelLine(e.msg);

Be aware, however, this new shortened syntax can be used anywhere at all, even when your code has
nothing to do with delegates or events. So for example, if you were to build a trivial class to add two numbers,
you might write the following:

class SimpleMath

public int Add(int x, int y)

{
return x + y;
}
public void PrintSum(int x, int y)
{
Console.WriteLine(x + y);
}

}

Alternatively, you could now write code like the following:

class SimpleMath
{

public int Add(int x, int y) => x +y;
public void PrintSum(int x, int y) => Console.WriteLine(x + y);

}

Ideally, at this point you can see the overall role of lambda expressions and understand how they
provide a “functional manner” to work with anonymous methods and delegate types. Although the lambda
operator (=>) might take a bit to get used to, always remember a lambda expression can be broken down to
the following simple equation:

ArgumentsToProcess => StatementsToProcessThem
Or, if using the => operator to implement a single-line type member, it would be like this:

TypeMember => SingleCodeStatement

It is worth pointing out that the LINQ programming model also makes substantial use of lambda
expressions to help simplify your coding efforts. You will examine LINQ beginning in Chapter 12.

Source Code You can use the CarEventsWithLambdas project in the Chapter 10 subdirectory.

405

http://dx.doi.org/10.1007/978-1-4842-3018-3_12
http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 10 DELEGATES, EVENTS, AND LAMBDA EXPRESSIONS

Summary

In this chapter, you examined a number of ways in which multiple objects can partake in a bidirectional
conversation. First, you looked at the C# delegate keyword, which is used to indirectly construct a class
derived from System.MulticastDelegate. As you saw, a delegate object maintains a list of methods to
call when told to do so. These invocations may be made synchronously (using the Invoke () method) or
asynchronously (via the BeginInvoke() and EndInvoke() methods). Again, the asynchronous nature of
.NET delegate types will be examined in Chapter 19.

You then examined the C# event keyword, which, when used in conjunction with a delegate type, can
simplify the process of sending your event notifications to waiting callers. As shown via the resulting CIL, the
.NET event model maps to hidden calls on the System.Delegate/System.MulticastDelegate types. In this
light, the C# event keyword is purely optional in that it simply saves you some typing time. As well, you have
seen that the C# 6.0 null conditional operator simplifies how you safely fire events to any interested party.

This chapter also explored a C# language feature termed anonymous methods. Using this syntactic
construct, you are able to directly associate a block of code statements to a given event. As you have seen,
anonymous methods are free to ignore the parameters sent by the event and have access to the “outer
variables” of the defining method. You also examined a simplified way to register events using method group
conversion.

Finally, you wrapped things up by looking at the C# lambda operator, =>. As shown, this syntaxis a
great shorthand notation for authoring anonymous methods, where a stack of arguments can be passed into
a group of statements for processing. Any method in the .NET platform that takes a delegate object as an
argument can be substituted with a related lambda expression, which will typically simplify your codebase
quite a bit.

406

http://dx.doi.org/10.1007/978-1-4842-3018-3_19

CHAPTER 11

Advanced C# Language Features/

In this chapter, you'll deepen your understanding of the C# programming language by examining a number
of more advanced topics. To begin, you'll learn how to implement and use an indexer method. This C#
mechanism enables you to build custom types that provide access to internal subitems using an array-like
syntax. After you learn how to build an indexer method, you'll see how to overload various operators
(+ -, <, >, and so forth) and how to create custom explicit and implicit conversion routines for your types
(and you'll learn why you might want to do this).
Next, you'll examine topics that are particularly useful when working with LINQ-centric APIs (though
you can use them outside of the context of LINQ)—specifically extension methods and anonymous types.
To wrap things up, you'll learn how to create an “unsafe” code context to directly manipulate
unmanaged pointers. While it is certainly true that using pointers in C# applications is a fairly infrequent
activity, understanding how to do so can be helpful in some circumstances that involve complex
interoperability scenarios.

Understanding Indexer Methods

As a programmer, you are certainly familiar with the process of accessing individual items contained within
a simple array using the index operator ([]). Here’s an example:

static void Main(string[] args)
{
// Loop over incoming command-line arguments
// using index operator.
for(int i = 0; i < args.Length; i++)
Console.WriteLine("Args: {0}", args[i]);

// Declare an array of local integers.
int[] myInts = { 10, 9, 100, 432, 9874};

// Use the index operator to access each element.
for(int j = 0; j < myInts.Length; j++)

Console.WritelLine("Index {0} = {1} ", j, myInts[j]);
Console.ReadlLine();

This code is by no means a major news flash. However, the C# language provides the capability to
design custom classes and structures that may be indexed just like a standard array, by defining an indexer
method. This particular feature is most useful when you are creating custom collection classes (generic or
nongeneric).

© Andrew Troelsen and Philip Japikse 2017 407
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_11

https://doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

Before examining how to implement a custom indexer, let’s begin by seeing one in action. Assume you
have added support for an indexer method to the custom PersonCollection type developed in Chapter 9
(specifically, the IssuesWithNonGenericCollections project). While you have not yet added the indexer,
observe the following usage within a new Console Application project named SimpleIndexer:

// Indexers allow you to access items in an array-like fashion.
class Program
{

static void Main(string[] args)

{

Console.Writeline("***** Fun with Indexers ****k\n");
PersonCollection myPeople = new PersonCollection();

// Add objects with indexer syntax.

myPeople[0] = new Person("Homer", "Simpson", 40);
myPeople[1] = new Person("Marge", "Simpson", 38);
myPeople[new Person("Lisa", "Simpson", 9);
myPeople[new Person("Bart", "Simpson", 7);
myPeople[4] = new Person("Maggie", "Simpson", 2);

]
2]
3]
4]
// Now obtain and display each item using indexer.
for (int i = 0; i < myPeople.Count; i++)
{
Console.WritelLine("Person number: {o0}", i);
Console.WriteLine("Name: {0} {1}",
myPeople[i].FirstName, myPeople[i].LastName);
Console.WriteLine("Age: {0}", myPeople[i].Age);
Console.WritelLine();

Asyou can see, indexers allow you to manipulate the internal collection of subobjects just like a
standard array. Now for the big question: how do you configure the PersonCollection class (or any custom
class or structure) to support this functionality? An indexer is represented as a slightly modified C# property
definition. In its simplest form, an indexer is created using the this[] syntax. Here is the required update for
the PersonCollection class:

// Add the indexer to the existing class definition.
public class PersonCollection : IEnumerable

{

private Arraylist arPeople = new Arraylist();

// Custom indexer for this class.
public Person this[int index]
{
get => (Person)arPeople[index];
set => arPeople.Insert(index, value);
}
}

408

http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

Note The get and set accessors are using the C# 7 addition to expression-bodied members, introduced in
Chapter 4 and explained in detail in Chapter 10.

Apart from using the this keyword, the indexer looks just like any other C# property declaration.

For example, the role of the get scope is to return the correct object to the caller. Here, you are doing so by
delegating the request to the indexer of the ArrayList object, as this class also supports an indexer. The
set scope is in charge of adding new Person objects; this is achieved by calling the Insert() method of the
Arraylist.

Indexers are yet another form of syntactic sugar, given that this functionality can also be achieved using
“normal” public methods such as AddPerson()or GetPerson(). Nevertheless, when you support indexer
methods on your custom collection types, they integrate well into the fabric of the .NET base class libraries.

While creating indexer methods is quite commonplace when you are building custom collections,
do remember that generic types give you this functionality out of the box. Consider the following method,
which uses a generic List<T> of Person objects. Note that you can simply use the indexer of List<T>
directly. Here’s an example:

static void UseGenericlListOfPeople()

{
List<Person> myPeople = new List<Person>();
myPeople.Add(new Person("Lisa", "Simpson", 9));
myPeople.Add(new Person("Bart", "Simpson", 7));

// Change first person with indexer.
myPeople[0] = new Person("Maggie", "Simpson", 2);

// Now obtain and display each item using indexer.
for (int i = 0; 1 < myPeople.Count; i++)
{
Console.WritelLine("Person number: {o}", i);
Console.WriteLine("Name: {0} {1}", myPeople[i].FirstName, myPeople[i].LastName);
Console.WriteLine("Age: {0}", myPeople[i].Age);
Console.WriteLine();

}

Source Code You can find the Simplelndexer project in the Chapter 11 subdirectory.

Indexing Data Using String Values

The current PersonCollection class defined an indexer that allowed the caller to identify subitems using a
numerical value. Understand, however, that this is not a requirement of an indexer method. Suppose you'd
prefer to contain the Person objects using a System.Collections.Generic.Dictionary<TKey, TValue>

409

http://dx.doi.org/10.1007/978-1-4842-3018-3_4
http://dx.doi.org/10.1007/978-1-4842-3018-3_10
http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

rather than an Arraylist. Given that Dictionary types allow access to the contained types using a key
(such as a person’s first name), you could define an indexer as follows:

public class PersonCollection : IEnumerable

{

private Dictionary<string, Person> listPeople = new Dictionary<string, Person>();

// This indexer returns a person based on a string index.
public Person this[string name]

{
get => (Person)listPeople[name];
set => listPeople[name] = value;

public void ClearPeople()
{ listPeople.Clear(); }

public int Count => listPeople.Count;

IEnumerator IEnumerable.GetEnumerator() => listPeople.GetEnumerator();

The caller would now be able to interact with the contained Person objects, as shown here:
static void Main(string[] args)
{

Console.WriteLine("***** Fun with Indexers **¥**\n");

PersonCollection myPeople = new PersonCollection();

myPeople["Homer"] = new Person("Homer", "Simpson", 40);
myPeople["Marge"] = new Person("Marge", "Simpson", 38);

// Get "Homer" and print data.
Person homer = myPeople["Homer"];
Console.WriteLine(homer.ToString());

Console.ReadlLine();

Again, if you were to use the generic Dictionary<TKey, TValue> type directly, you'd gain the indexer
method functionality out of the box, without building a custom, nongeneric class supporting a string
indexer. Nevertheless, do understand that the data type of any indexer will be based on how the supporting
collection type allows the caller to retrieve subitems.

Source Code You can find the StringIndexer project in the Chapter 11 subdirectory.

410

http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

Overloading Indexer Methods

Understand that indexer methods may be overloaded on a single class or structure. Thus, if it makes sense

to allow the caller to access subitems using a numerical index or a string value, you might define multiple
indexers for a single type. By way of example, in ADO.NET (.NET’s native database-access API), the DataSet
class supports a property named Tables, which returns to you a strongly typed DataTableCollection type.
As it turns out, DataTableCollection defines three indexers to get and set DataTable objects—one by ordinal
position and the others by a friendly string moniker and optional containing namespace, as shown here:

public sealed class DataTableCollection : InternalDataCollectionBase

{

// Overloaded indexers!

public DataTable this[int index] { get; }

public DataTable this[string name] { get; }

public DataTable this[string name, string tableNamespace] { get; }

It is common for types in the base class libraries to support indexer methods. So be aware, even if your
current project does not require you to build custom indexers for your classes and structures, that many
types already support this syntax.

Indexers with Multiple Dimensions

You can also create an indexer method that takes multiple parameters. Assume you have a custom collection
that stores subitems in a 2D array. If this is the case, you may define an indexer method as follows:

public class SomeContainer

{

private int[,] my2DintArray = new int[10, 10];

public int this[int row, int column]
{ /* get or set value from 2D array */ }

}

Again, unless you are building a highly stylized custom collection class, you won’t have much need to
build a multidimensional indexer. Still, once again ADO.NET showcases how useful this construct can be.
The ADO.NET DataTable is essentially a collection of rows and columns, much like a piece of graph paper or
the general structure of a Microsoft Excel spreadsheet.

While DataTable objects are typically populated on your behalf using a related “data adapter,” the
following code illustrates how to manually create an in-memory DataTable containing three columns
(for the first name, last name, and age of each record). Notice how once you have added a single row to
the DataTable, you use a multidimensional indexer to drill into each column of the first (and only) row.

(If you are following along, you'll need to import the System.Data namespace into your code file.)

static void MultiIndexerWithDataTable()

{
// Make a simple DataTable with 3 columns.
DataTable myTable = new DataTable();
myTable.Columns.Add(new DataColumn("FirstName"));
myTable.Columns.Add(new DataColumn("LastName"));
myTable.Columns.Add(new DataColumn("Age"));

411

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

// Now add a row to the table.
myTable.Rows.Add("Mel", "Appleby", 60);

// Use multidimension indexer to get details of first row.
Console.WriteLine("First Name: {0}", myTable.Rows[0][0]);
Console.WriteLine("Last Name: {0}", myTable.Rows[0][1]);
Console.WriteLine("Age : {0}", myTable.Rows[0][2]);

Do be aware that you'll take a rather deep dive into ADO.NET beginning with Chapter 21, so if some
of the previous code seems unfamiliar, fear not. The main point of this example is that indexer methods
can support multiple dimensions and, if used correctly, can simplify the way you interact with contained
subobjects in custom collections.

Indexer Definitions on Interface Types

Indexers can be defined on a given .NET interface type to allow supporting types to provide a custom
implementation. Here is a simple example of an interface that defines a protocol for obtaining string objects
using a numerical indexer:

public interface IStringContainer

{
string this[int index] { get; set; }
}

With this interface definition, any class or structure that implements this interface must now support a
read-write indexer that manipulates subitems using a numerical value. Here is a partial implementation of
such as class:

class SomeClass : IStringContainer

{

private List<string> myStrings = new List<string>();

public string this[int index]
{
get => myStrings[index];
set => myStrings.Insert(index, value);
}
}

That wraps up the first major topic of this chapter. Now let’s examine a language feature that lets you
build custom classes or structures that respond uniquely to the intrinsic operators of C#. Next, allow me to
introduce the concept of operator overloading.

Understanding Operator Overloading

C#, like any programming language, has a canned set of tokens that are used to perform basic operations
on intrinsic types. For example, you know that the + operator can be applied to two integers to yield a larger
integer.

412

http://dx.doi.org/10.1007/978-1-4842-3018-3_21

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

// The + operator with ints.
int a = 100;

int b = 240;

int ¢ = a + by // c is now 340

Once again, this is no major news flash, but have you ever stopped and noticed how the same + operator
can be applied to most intrinsic C# data types? For example, consider this code:

// + operator with strings.

string s1 = "Hello";
string s2 = " world!";
string s3 = s1 + s2;3 // s3 is now "Hello World!"

In essence, the + operator functions in specific ways based on the supplied data types (strings or
integers, in this case). When the + operator is applied to numerical types, the result is the summation of the
operands. However, when the + operator is applied to string types, the result is string concatenation.

The C# language gives you the capability to build custom classes and structures that also respond
uniquely to the same set of basic tokens (such as the + operator). While not every possible C# operator can
be overloaded, many can, as shown in Table 11-1.

Table 11-1. Overloadability of C# Operators

C# Operator Overloadability

+ -,1,~, 44+ --, true, false These unary operators can be overloaded.

+ 550,68 1,7, <<, > These binary operators can be overloaded.

==,1=5,¢, >, <=5, >= These comparison operators can be overloaded. C# demands that “like”
operators (i.e., < and >, <= and >=, == and ! =) are overloaded together.

[] The [] operator cannot be overloaded. As you saw earlier in this chapter,

however, the indexer construct provides the same functionality.

O The () operator cannot be overloaded. As you will see later in this chapter,
however, custom conversion methods provide the same functionality.

+=, -=,*=, /=,%=,8=, |=, "=, Shorthand assignment operators cannot be overloaded; however, you
<<=, 0= receive them as a freebie when you overload the related binary operator.

Overloading Binary Operators

To illustrate the process of overloading binary operators, assume the following simple Point class is defined
in a new Console Application project named OverloadedOps:

// Just a simple, everyday C# class.
public class Point
{

public int X {get; set;}

public int Y {get; set;}

413

CHAPTER 11 ADVANCED C# LANGUAGE FEATURES

public Point(int xPos, int yPos)
{
X
Y
}

public override string ToString() => $"[{this.X}, {this.Y}]";

xPos;
yPos;

}

Now, logically speaking, it makes sense to “add” Points together. For example, if you added together
two Point variables, you should receive a new Point that is the summation of the X and Y values. Of course,
it might also be helpful to subtract one Point from another. Ideally, you would like to be able to author the
following code:

// Adding and subtracting two points?
static void Main(string[] args)

{

Console.WriteLine("***** Fun with Overloaded Operators *****\n");

// Make two points.

Point ptOne = new Point(100, 100);
Point ptTwo = new Point(40, 40);
Console.WriteLine("ptOne = {0}", ptOne);
Console.WriteLine("ptTwo = {0}", ptTwo);

// Add the points to make a bigger point?
Console.WriteLine("ptOne + ptTwo: {0} ", ptOne + ptTwo);

// Subtract the points to make a smaller point?
Console.WriteLine("ptOne - ptTwo: {0} ", ptOne - ptTwo);
Console.ReadLine();

However, as your Point now stands, you will receive compile-time errors, as the Point type does
not know how to respond to the + or - operators. To equip a custom type to respond uniquely to intrinsic
operators, C# provides the operator keyword, which you can use only in conjunction with the static
keyword. When you overload a binary operator (such as + and -), you will most often pass in two arguments
that are the same type as the defining class (a Point in this example), as illustrated in the following code
update:

// A more intelligent Point type.
public class Point

{

// Overloaded operator +.
public static Point operator + (Point p1, Point p2) => new Point(p1.X + p2.X, p1.Y + p2.Y);

// Overloaded operator -.
public static Point operator - (Point p1, Point p2) => new Point(p1.X - p2.X, p1.Y - p2.Y);

414

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

The logic behind operator + is simply to return a new Point object based on the summation of the fields
of the incoming Point parameters. Thus, when you write pt1 + pt2, under the hood you can envision the
following hidden call to the static operator + method:

// Pseudo-code: Point p3 = Point.operator+ (p1, p2)
Point p3 = p1 + p2;

Likewise, p1 - p2 maps to the following:

// Pseudo-code: Point p4 = Point.operator- (pi1, p2)
Point p4 = p1 - p2;

With this update, your program now compiles, and you find you are able to add and subtract Point
objects, as shown in the following output:

ptOne = [100, 100]

ptTwo = [40, 40]

ptOne + ptTwo: [140, 140]
ptOne - ptTwo: [60, 60]

When you are overloading a binary operator, you are not required to pass in two parameters of the same
type. If it makes sense to do so, one of the arguments can differ. For example, here is an overloaded operator
+ that allows the caller to obtain a new Point that is based on a numerical adjustment:

public class Point

{
public static Point operator + (Point p1, int change) => new Point(p1.X + change,
p1.Y + change);

public static Point operator + (int change, Point p1) => new Point(p1.X + change,
p1.Y + change);

Notice that you need both versions of the method if you want the arguments to be passed in either order
(i.e., you can’t just define one of the methods and expect the compiler to automatically support the other
one). You are now able to use these new versions of operator + as follows:

// Prints [110, 110].
Point biggerPoint = ptOne + 10;
Console.WriteLine("ptOne + 10 = {0}", biggerPoint);

// Prints [120, 120].

Console.WriteLine("10 + biggerPoint = {0}", 10 + biggerPoint);
Console.WriteLine();

415

CHAPTER 11 ADVANCED C# LANGUAGE FEATURES

And What of the += and -= Operators?

If you are coming to C# from a C++ background, you might lament the loss of overloading the shorthand
assignment operators (+=, -=, and so forth). Don’t despair. In terms of C#, the shorthand assignment
operators are automatically simulated if a type overloads the related binary operator. Thus, given that the
Point structure has already overloaded the + and - operators, you can write the following:

// Overloading binary operators results in a freebie shorthand operator.
static void Main(string[] args)
{

// Freebie +=

Point ptThree = new Point(90, 5);

Console.WriteLine("ptThree = {0}", ptThree);
Console.WriteLine("ptThree += ptTwo: {0}", ptThree += ptTwo);

// Freebie -=

Point ptFour = new Point(0, 500);

Console.WriteLine("ptFour = {0}", ptFour);
Console.WriteLine("ptFour -= ptThree: {0}", ptFour -= ptThree);
Console.ReadlLine();

Overloading Unary Operators

C# also allows you to overload various unary operators, such as ++ and --. When you overload a unary
operator, you also must use the static keyword with the operator keyword; however, in this case you simply
pass in a single parameter that is the same type as the defining class/structure. For example, if you were to
update the Point with the following overloaded operators:

public class Point

{

// Add 1 to the X/Y values for the incoming Point.
public static Point operator ++(Point p1) => new Point(p1l.X+1, p1.Y+1);

// Subtract 1 from the X/Y values for the incoming Point.
public static Point operator --(Point p1) => new Point(p1.X-1, p1.Y-1);

}

you could increment and decrement Point’s x and y values like this:
static void Main(string[] args)
{
// Applying the ++ and -- unary operators to a Point.
Point ptFive = new Point(1, 1);

Console.WriteLine("++ptFive = {0}", ++ptFive); // [2, 2]
Console.WriteLine("--ptFive = {0}", --ptFive); // [1, 1]

416

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

// Apply same operators as postincrement/decrement.

Point ptSix = new Point(20, 20);
Console.WriteLine("ptSix++ = {0}", ptSix++); // [20, 20]
Console.WriteLine("ptSix-- = {o}", ptSix--); // [21, 21]
Console.ReadLine();

Notice in the preceding code example you are applying the custom ++ and -- operators in two different
manners. In C++, it is possible to overload pre- and post-increment/decrement operators separately. This
is not possible in C#. However, the return value of the increment/decrement is automatically handled
“correctly” free of charge (i.e., for an overloaded ++ operator, pt++ has the value of the unmodified object as
its value within an expression, while ++pt has the new value applied before use in the expression).

Overloading Equality Operators

As you might recall from Chapter 6, System.0bject.Equals() can be overridden to perform value-based
(rather than referenced-based) comparisons between reference types. If you choose to override Equals()
(and the often related System.0Object.GetHashCode () method), it is trivial to overload the equality operators
(==and !=). To illustrate, here is the updated Point type:

// This incarnation of Point also overloads the == and != operators.
public class Point

{

public override bool Equals(object o) => o0.ToString() == this.ToString();
public override int GetHashCode() => this.ToString().GetHashCode();

// Now let's overload the == and != operators.
public static bool operator ==(Point p1, Point p2) => pi.Equals(p2);

public static bool operator !=(Point p1, Point p2) => !p1.Equals(p2);
Notice how the implementation of operator == and operator != simply makes a call to the overridden
Equals() method to get the bulk of the work done. Given this, you can now exercise your Point class as

follows:

// Make use of the overloaded equality operators.
static void Main(string[] args)

{
Console.WriteLine("ptOne == ptTwo : {0}", ptOne == ptTwo);
Console.WriteLine("ptOne != ptTwo : {0}", ptOne != ptTwo);
Console.ReadlLine();

}

Asyou can seeg, it is quite intuitive to compare two objects using the well-known == and ! = operators,
rather than making a call to Object. Equals().Ifyou do overload the equality operators for a given class,
keep in mind that C# demands that if you override the == operator, you must also override the ! = operator (if
you forget, the compiler will let you know).

417

http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

Overloading Comparison Operators

In Chapter 8, you learned how to implement the IComparable interface to compare the relationship between
two like objects. You can, in fact, also overload the comparison operators (<, >, <=, and >=) for the same class.
As with the equality operators, C# demands that if you overload <, you must also overload >. The same holds
true for the <= and >= operators. If the Point type overloaded these comparison operators, the object user
could now compare Points, as follows:

// Using the overloaded < and > operators.
static void Main(string[] args)

{

Console.WriteLine("ptOne < ptTwo : {0}", ptOne < ptTwo);
Console.WriteLine("ptOne > ptTwo : {0}", ptOne > ptTwo);
Console.ReadlLine();

}

Assuming you have implemented the IComparable interface (or better yet, the generic equivalent),
overloading the comparison operators is trivial. Here is the updated class definition:

// Point is also comparable using the comparison operators.
public class Point : IComparable<Point>
{

public int CompareTo(Point other)

{
if (this.X > other.X && this.Y > other.Y)

return 1;
if (this.X < other.X &3 this.Y < other.Y)
return -1;
else
return 0;
}

public static bool operator <(Point pi1, Point p2) => pi.CompareTo(p2) < O;
public static bool operator >(Point p1, Point p2) => pi.CompareTo(p2) > 0;

public static bool operator <=(Point p1, Point p2) => pi.CompareTo(p2) <= O;

public static bool operator >=(Point p1, Point p2) => pi.CompareTo(p2) >= 0;

Final Thoughts Regarding Operator Overloading

Asyou have seen, C# provides the capability to build types that can respond uniquely to various intrinsic,
well-known operators. Now, before you go and retrofit all your classes to support such behavior, you must be
sure that the operators you are about to overload make some sort of logical sense in the world at large.

418

http://dx.doi.org/10.1007/978-1-4842-3018-3_8

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

For example, let’s say you overloaded the multiplication operator for the MiniVan class. What exactly
would it mean to multiply two MiniVan objects? Not much. In fact, it would be confusing for teammates to
see the following use of MiniVan objects:

// Huh?! This is far from intuitive...
MiniVan newVan = myVan * yourVan;

Overloading operators is generally useful only when you're building atomic data types. Text, points,
rectangles, fractions, and hexagons make good candidates for operator overloading. People, managers, cars,
database connections, and web pages do not. As a rule of thumb, if an overloaded operator makes it harder
for the user to understand a type’s functionality, don’t do it. Use this feature wisely.

Source Code You can find the OverloadedOps project in the Chapter 11 subdirectory.

Understanding Custom Type Conversions

Let’s now examine a topic closely related to operator overloading: custom type conversions. To set the stage
for the discussion, let’s quickly review the notion of explicit and implicit conversions between numerical
data and related class types.

Recall: Numerical Conversions

In terms of the intrinsic numerical types (sbyte, int, float, etc.), an explicit conversion is required when
you attempt to store a larger value in a smaller container, as this could result in a loss of data. Basically, this
is your way to tell the compiler, “Leave me alone, I know what I am trying to do.” Conversely, an implicit
conversion happens automatically when you attempt to place a smaller type in a destination type that will
not result in a loss of data.

static void Main()

{
int a = 123;
long b = a; // Implicit conversion from int to long.
int ¢ = (int) b; // Explicit conversion from long to int.
}

Recall: Conversions Among Related Class Types

As shown in Chapter 6, class types may be related by classical inheritance (the “is-a” relationship). In this
case, the C# conversion process allows you to cast up and down the class hierarchy. For example, a derived
class can always be implicitly cast to a base type. However, if you want to store a base class type in a derived
variable, you must perform an explicit cast, like so:

// Two related class types.

class Base{}
class Derived : Base{}

419

http://dx.doi.org/10.1007/978-1-4842-3018-3_11
http://dx.doi.org/10.1007/978-1-4842-3018-3_6

CHAPTER 11 ADVANCED C# LANGUAGE FEATURES

class Program
{
static void Main(string[] args)
{
// Implicit cast between derived to base.
Base myBaseType;
myBaseType = new Derived();

// Must explicitly cast to store base reference
// in derived type.
Derived myDerivedType = (Derived)myBaseType;

This explicit cast works because the Base and Derived classes are related by classical inheritance.
However, what if you have two class types in different hierarchies with no common parent (other than
System.0Object) that require conversions? Given that they are not related by classical inheritance, typical
casting operations offer no help (and you would get a compiler error to boot!).

On a related note, consider value types (structures). Assume you have two .NET structures named
Square and Rectangle. Given that structures cannot leverage classic inheritance (as they are always sealed),
you have no natural way to cast between these seemingly related types.

While you could create helper methods in the structures (such as Rectangle.ToSquare()), C# lets you
build custom conversion routines that allow your types to respond to the () casting operator. Therefore, if
you configured the structures correctly, you would be able to use the following syntax to explicitly convert
between them as follows:

// Convert a Rectangle to a Square!
Rectangle rect = new Rectangle

{
Width = 3;
Height = 10;
}

Square sq = (Square)rect;

Creating Custom Conversion Routines

Begin by creating a new Console Application project named CustomConversions. C# provides two
keywords, explicit and implicit, that you can use to control how your types respond during an attempted
conversion. Assume you have the following structure definitions:

public struct Rectangle

{
public int Width {get; set;}
public int Height {get; set;}

public Rectangle(int w, int h) : this()
{

Width = w;

Height = h;
}

420

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

public void Draw()
{

for (int i = 0; i < Height; i++)
{
for (int j = 0; j < Width; j++)
{

Console.Write("*");

}

Console.Writeline();

}
}

public override string ToString() => $"[Width = {Width}; Height = {Height}]";
}

public struct Square

{
public int Length {get; set;}
public Square(int 1) : this()
{
Length = 1;
}

public void Draw()
{

for (int i = 0; i < Length; i++)
{
for (int j = 0; j < Length; j++)

Console.Write("*");

}

Console.WritelLine();

}
}

public override string ToString() => $"[Length = {Length}]", Length);

// Rectangles can be explicitly converted into Squares.
public static explicit operator Square(Rectangle r)
{
Square s = new Square {Length = r.Height};
return s;
}
}

421

CHAPTER 11 ADVANCED C# LANGUAGE FEATURES

Note You’ll notice in the Square and Rectangle constructors, | am explicitly chaining to the default constructor.
The reason is that if you have a structure, which makes use of automatic property syntax (as you do here), the
default constructor must be explicitly called (from all custom constructors) to initialize the private backing fields (for
example, if the structures had any additional fields/properties, this default constructor would initialize these fields to
default values). Yes, this is a quirky rule of C#, but after all, this is an advanced topics chapter.

Notice that this iteration of the Square type defines an explicit conversion operator. Like the process of
overloading an operator, conversion routines make use of the C# operator keyword, in conjunction with the
explicit or implicit keyword, and must be defined as static. The incoming parameter is the entity you
are converting from, while the operator type is the entity you are converting to.

In this case, the assumption is that a square (being a geometric pattern in which all sides are of equal
length) can be obtained from the height of a rectangle. Thus, you are free to convert a Rectangle into a
Square, as follows:

static void Main(string[] args)

{
Console.WriteLine("***** Fun with Conversions **¥¥¥\n");
// Make a Rectangle.
Rectangle r = new Rectangle(15, 4);
Console.WriteLine(r.ToString());
r.Draw();

Console.Writeline();

// Convert r into a Square,

// based on the height of the Rectangle.
Square s = (Square)r;
Console.WriteLine(s.ToString());
s.Draw();

Console.ReadLine();

You can see the output here:

¥Rk Fun with Conversions *¥¥**

[Width = 15; Height = 4]

skokskokskokokskok ok skok sk ok
sokskokskokoksk sk sk skok ko
koo ok sk okokoskeskosk ok ok sk k ok >k
skosk sk ok sk ok sk ok sk sk skosk sk sk ok
[Length = 4]
sokskok

sokskok

kokokok

skkkok

422

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

While it may not be all that helpful to convert a Rectangle into a Square within the same scope, assume
you have a function that has been designed to take Square parameters.

// This method requires a Square type.
static void DrawSquare(Square sq)

{
Console.WriteLine(sq.ToString());

sq.Draw();

Using your explicit conversion operation on the Square type, you can now pass in Rectangle types for
processing using an explicit cast, like so:

static void Main(string[] args)

{
// Convert Rectangle to Square to invoke method.
Rectangle rect = new Rectangle(10, 5);
DrawSquare((Square)rect);
Console.ReadlLine();

}

Additional Explicit Conversions for the Square Type

Now that you can explicitly convert Rectangles into Squares, let’s examine a few additional explicit
conversions. Given that a square is symmetrical on all sides, it might be helpful to provide an explicit
conversion routine that allows the caller to cast from an integer type into a Square (which, of course, will
have a side length equal to the incoming integer). Likewise, what if you were to update Square such that the
caller can cast from a Square into an int? Here is the calling logic:

static void Main(string[] args)

{
// Converting an int to a Square.
Square sq2 = (Square)90;
Console.WriteLine("sq2 = {0}", sq2);
// Converting a Square to an int.
int side = (int)sq2;
Console.WriteLine("Side length of sq2 = {0}", side);
Console.ReadLine();
}

and here is the update to the Square class:

public struct Square

{

public static explicit operator Square(int sidelength)

423

CHAPTER 11 ADVANCED C# LANGUAGE FEATURES

{
Square newSq = new Square {Length = sidelength};

return newSq;

}

public static explicit operator int (Square s) => s.lLength;

}

To be honest, converting from a Square into an integer may not be the most intuitive (or useful)
operation (after all, chances are you could just pass such values to a constructor). However, it does point out
an important fact regarding custom conversion routines: the compiler does not care what you convert to or
from, as long as you have written syntactically correct code.

Thus, as with overloading operators, just because you can create an explicit cast operation for a given type
does not mean you should. Typically, this technique will be most helpful when you're creating .NET structure
types, given that they are unable to participate in classical inheritance (where casting comes for free).

Defining Implicit Conversion Routines

So far, you have created various custom explicit conversion operations. However, what about the following
implicit conversion?

static void Main(string[] args)
{
Square s3 = new Square {Length = 83};

// Attempt to make an implicit cast?
Rectangle rect2 = s3;

Console.ReadlLine();

This code will not compile, given that you have not provided an implicit conversion routine for the
Rectangle type. Now here is the catch: it is illegal to define explicit and implicit conversion functions on
the same type if they do not differ by their return type or parameter set. This might seem like a limitation;
however, the second catch is that when a type defines an implicit conversion routine, it is legal for the caller
to make use of the explicit cast syntax!

Confused? To clear things up, let’s add an implicit conversion routine to the Rectangle structure using
the C# implicit keyword (note that the following code assumes the width of the resulting Rectangle is
computed by multiplying the side of the Square by 2):

public struct Rectangle
{

public static implicit operator Rectangle(Square s)

{

Rectangle r = new Rectangle

{

Height = s.Length,

Width = s.Length * 2 // Assume the length of the new Rectangle with (Length x 2).
};

424

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

return r;

}
}

With this update, you are now able to convert between types, as follows:

static void Main(string[] args)

{

// Implicit cast OK!
Square s3 = new Square { Length= 7};

Rectangle rect2 = s3;
Console.WritelLine("rect2 = {0}", rect2);

// Explicit cast syntax still OK!
Square s4 = new Square {Length = 3};
Rectangle rect3 = (Rectangle)s4;

Console.WritelLine("rect3 = {0}", rect3);
Console.ReadlLine();

That wraps up your look at defining custom conversion routines. As with overloaded operators,
remember that this bit of syntax is simply a shorthand notation for “normal” member functions, and in this
light it is always optional. When used correctly, however, custom structures can be used more naturally, as
they can be treated as true class types related by inheritance.

Source Code You can find the CustomConversions project in the Chapter 11 subdirectory.

Understanding Extension Methods

.NET 3.5 introduced the concept of extension methods, which allow you to add new methods or properties
to a class or structure, without modifying the original type in any direct manner. So, where might this be
helpful? Consider the following possibilities.

First, say you have a given class that is in production. It becomes clear over time that this class should
support a handful of new members. If you modify the current class definition directly, you risk the possibility
of breaking backward compatibility with older codebases making use of it, as they might not have been
compiled with the latest and greatest class definition. One way to ensure backward compatibility is to create
anew derived class from the existing parent; however, now you have two classes to maintain. As we all know,
code maintenance is the least glamorous part of a software engineer’s job description.

Now consider this situation. Let’s say you have a structure (or maybe a sealed class) and want to add
new members so that it behaves polymorphically in your system. Since structures and sealed classes cannot
be extended, your only choice is to add the members to the type, once again risking backward compatibility!

Using extension methods, you are able to modify types without subclassing and without modifying the
type directly. The catch is that the new functionality is offered to a type only if the extension methods have
been referenced for use in your current project.

425

http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

Defining Extension Methods

When you define extension methods, the first restriction is that they must be defined within a static class
(see Chapter 5); therefore, each extension method must be declared with the static keyword. The second
point is that all extension methods are marked as such by using the this keyword as a modifier on the first
(and only the first) parameter of the method in question. The “this qualified” parameter represents the item
being extended.

To illustrate, create a new Console Application project named ExtensionMethods. Now, assume you
are authoring a class named MyExtensions that defines two extension methods. The first method allows any
object to use a new method named DisplayDefiningAssembly() that makes use of types in the System.
Reflection namespace to display the name of the assembly containing the type in question.

Note You will formally examine the reflection API in Chapter 15. If you are new to the topic, simply
understand that reflection allows you to discover the structure of assemblies, types, and type members at
runtime.

The second extension method, named ReverseDigits(), allows any int to obtain a new version
of itself where the value is reversed digit by digit. For example, if an integer with the value 1234 called
ReverseDigits(), the integer returned is set to the value 4321. Consider the following class implementation
(be sure to import the System.Reflection namespace if you are following along):

static class MyExtensions
{
// This method allows any object to display the assembly
// it is defined in.
public static void DisplayDefiningAssembly(this object obj)
{
Console.WriteLine("{0} lives here: => {1}\n", obj.CGetType().Name,
Assembly.GetAssembly(obj.GetType()).GetName().Name);
}

// This method allows any integer to reverse its digits.
// For example, 56 would return 65.
public static int ReverseDigits(this int i)
{
// Translate int into a string, and then
// get all the characters.
char[] digits = i.ToString().ToCharArray();

// Now reverse items in the array.
Array.Reverse(digits);

// Put back into string.
string newDigits = new string(digits);

426

http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_15

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

// Finally, return the modified string back as an int.
return int.Parse(newDigits);
}
}

Again, note how the first parameter of each extension method has been qualified with the this
keyword, before defining the parameter type. It is always the case that the first parameter of an extension
method represents the type being extended. Given that DisplayDefiningAssembly() has been prototyped
to extend System.Object, every type now has this new member, as Object is the parent to all types in the
.NET platform. However, ReverseDigits() has been prototyped to extend only integer types; therefore, if
anything other than an integer attempts to invoke this method, you will receive a compile-time error.

Note Understand that a given extension method can have multiple parameters, but only the first parameter
can be qualified with this. The additional parameters would be treated as normal incoming parameters for use
by the method.

Invoking Extension Methods

Now that you have these extension methods in place, consider the following Main() method that applies the
extension method to various types in the base class libraries:

static void Main(string[] args)

{
Console.Writeline("***** Fyn with Extension Methods *****\n");
// The int has assumed a new identity!
int myInt = 12345678;
myInt.DisplayDefiningAssembly();
// So has the DataSet!
System.Data.DataSet d = new System.Data.DataSet();
d.DisplayDefiningAssembly();
// And the SoundPlayer!
System.Media.SoundPlayer sp = new System.Media.SoundPlayer();
sp.DisplayDefiningAssembly();
// Use new integer functionality.
Console.WritelLine("Value of myInt: {0}", myInt);
Console.WriteLine("Reversed digits of myInt: {0}", myInt.ReverseDigits());
Console.ReadlLine();

}

427

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

Here is the output:

*HHRFE Fun with Extension Methods *****
Int32 lives here: => mscorlib

DataSet lives here: => System.Data
SoundPlayer lives here: => System

Value of myInt: 12345678
Reversed digits of myInt: 87654321

Importing Extension Methods

When you define a class containing extension methods, it will no doubt be defined within a .NET
namespace. If this namespace is different from the namespace using the extension methods, you will need
to make use of the expected C# using keyword. When you do, your code file has access to all extension
methods for the type being extended. This is important to remember because if you do not explicitly import
the correct namespace, the extension methods are not available for that C# code file.

In effect, although it can appear on the surface that extension methods are global in nature, they are in
fact limited to the namespaces that define them or the namespaces that import them. Thus, if you wrap the
MyExtensions class into a namespace named MyExtensionMethods, as follows:

namespace MyExtensionMethods

{

static class MyExtensions

{

L
}

other namespaces in the project would need to explicitly import the MyExtensionMethods namespace to
gain the extension methods defined by your class.

Note It is common practice to not only isolate extension methods into a dedicated .NET namespace but to
isolate them into a dedicated class library. In this way, new applications can “opt in” to extensions by explicitly
referencing the correct library and importing the namespace. Chapter 14 will examine the details of building
and using custom .NET class libraries.

The IntelliSense of Extension Methods

Given that extension methods are not literally defined on the type being extended, it is certainly possible
to become confused when examining an existing codebase. For example, assume you have imported a
namespace that defined some number of extension methods authored by a teammate. As you are authoring

428

http://dx.doi.org/10.1007/978-1-4842-3018-3_14

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

your code, you might create a variable of the extended type, apply the dot operator, and find dozens of new
methods that are not members of the original class definition!
Thankfully, Visual Studio’s IntelliSense mechanism marks all extension methods, as shown in Figure 11-1.

Program.cs* & X

[c#] ExtensionMethods - l “% ExtensionMethods.Program - I ®, Main(string(] args) -
{ +=
-~

Console.WriteLine("***** Fyn with Extension Methods *****\n").

// The int has assumed a new identity!
int myInt = 12345678;
myInt.DisplayDefiningAssembly();

it @ CompareTo i1
S0 g = R
St :m‘*'f. DisplayDefiningAssembly (extension) void object.DisplayDefiningAssembly()

d.pisp” Fauals
@ GetHashCode
// And® GetType
System@ GetTypeCode N System.Media.SoundPlayer();
sp.Dis @} ReverseDigits
@ ToString

// Use vew LNCEEET TUNTC Lol icy .

Console.WriteLine("Value of myInt: {@}", myInt); v
98% < 4 ,

Figure 11-1. The IntelliSense of extension methods

Any method marked as such is a friendly reminder that the method is defined outside of the original
class definition via an extension method.

Source Code You can find the ExtensionMethods project in the Chapter 11 subdirectory.

Extending Types Implementing Specific Interfaces

At this point, you have seen how to extend classes (and, indirectly, structures that follow the same syntax)
with new functionality via extension methods. It is also possible to define an extension method that can only
extend a class or structure that implements the correct interface. For example, you could say something
to the effect of “If a class or structure implements IEnumerable<T>, then that type gets the following new
members.” Of course, it is possible to demand that a type support any interface at all, including your own
custom interfaces.

To illustrate, create a new Console Application project named InterfaceExtensions. The goal here is
to add a new method to any type that implements IEnumerable, which would include any array and many

429

http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

nongeneric collection classes (recall from Chapter 8 that the generic IEnumerable<T> interface extends the
nongeneric IEnumerable interface). Add the following extension class to your new project:

static class AnnoyingExtensions

{

public static void PrintDataAndBeep(this System.Collections.IEnumerable iterator)

{

foreach (var item in iterator)
{
Console.Writeline(item);
Console.Beep();
}
}
}

Given that the PrintDataAndBeep () method can be used by any class or structure that implements
IEnumerable, you could test via the following Main() method:

static void Main(string[] args)

{

Console.WriteLine("***** Extending Interface Compatible Types *¥¥¥*\n");

// System.Array implements IEnumerable!

string[] data = { "Wow", "this", "is", "sort", "of", "annoying",
llbutll, Ilinll’ llallJ Ilweirdll, "way", Ilfun!ll};

data.PrintDataAndBeep();

Console.WriteLine();

// List<T> implements IEnumerable!
List<int> myInts = new List<int>() {10, 15, 20};
myInts.PrintDataAndBeep();

Console.ReadlLine();

That wraps up your examination of C# extension methods. Remember that this particular language
feature can be useful whenever you want to extend the functionality of a type but do not want to subclass
(or cannot subclass if the type is sealed), for the purposes of polymorphism. As you will see later in the text,
extension methods play a key role for LINQ APIs. In fact, you will see that under the LINQ APIs, one of the
most common items being extended is a class or structure implementing (surprise!) the generic version of
IEnumerable.

Source Code You can find the InterfaceExtensions project in the Chapter 11 subdirectory.

430

http://dx.doi.org/10.1007/978-1-4842-3018-3_8
http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

Understanding Anonymous Types

As an object-oriented programmer, you know the benefits of defining classes to represent the state and
functionality of a given item you are attempting to model. To be sure, whenever you need to define a class
that is intended to be reused across projects and that provides numerous bits of functionality through a set of
methods, events, properties, and custom constructors, creating a new C# class is common practice.

However, there are other times when you would like to define a class simply to model a set of
encapsulated (and somehow related) data points without any associated methods, events, or other
specialized functionality. Furthermore, what if this type is to be used only by a handful of methods in your
program? It would be rather a bother to define a full class definition as shown next when you know full
well this class will be used in only a handful of places. To accentuate this point, here is the rough outline of
what you might need to do when you need to create a “simple” data type that follows typical value-based
semantics:

class SomeClass

{

// Define a set of private member variables...
// Make a property for each member variable...
// Override ToString() to account for key member variables...

// Override GetHashCode() and Equals() to work with value-based equality...
}

Asyou can seg, it is not necessarily so simple. Not only do you need to author a fair amount of code,
but you have another class to maintain in your system. For temporary data such as this, it would be useful
to whip up a custom data type on the fly. For example, let’s say you need to build a custom method that
receives a set of incoming parameters. You would like to take these parameters and use them to create a new
data type for use in this method scope. Further, you would like to quickly print out this data using the typical
ToString() method and perhaps use other members of System.0bject. You can do this very thing using
anonymous type syntax.

Defining an Anonymous Type

When you define an anonymous type, you do so by using the var keyword (see Chapter 3) in conjunction
with object initialization syntax (see Chapter 5). You must use the var keyword because the compiler will
automatically generate a new class definition at compile time (and you never see the name of this class in
your C# code). The initialization syntax is used to tell the compiler to create private backing fields and (read-
only) properties for the newly created type.

To illustrate, create a new Console Application project named AnonymousTypes. Now, add the
following method to your Program class, which composes a new type, on the fly, using the incoming
parameter data:

static void BuildAnonType(string make, string color, int currSp)

{
// Build anon type using incoming args.
var car = new { Make = make, Color = color, Speed = currSp };

// Note you can now use this type to get the property data!
Console.WriteLine("You have a {0} {1} going {2} MPH", car.Color, car.Make, car.Speed);

431

http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_5

CHAPTER 11 ADVANCED C# LANGUAGE FEATURES

// Anon types have custom implementations of each virtual
// method of System.Object. For example:
Console.WriteLine("ToString() == {0}", car.ToString());

}

You can call this method from Main(), as expected. However, do note that an anonymous type can also
be created using hard-coded values, as shown here:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Anonymous Types ***¥¥\n");

// Make an anonymous type representing a car.
var myCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };

// Now show the color and make.
Console.WriteLine("My car is a {0} {1}.", myCar.Color, myCar.Make);

// Now call our helper method to build anonymous type via args.
BuildAnonType("BMW", "Black", 90);

Console.ReadLine();

So, at this point, simply understand that anonymous types allow you to quickly model the “shape” of
data with very little overhead. This technique is little more than a way to whip up a new data type on the fly,
which supports bare-bones encapsulation via properties and acts according to value-based semantics. To
understand that last point, let’s see how the C# compiler builds out anonymous types at compile time and,
specifically, how it overrides the members of System.Object.

The Internal Representation of Anonymous Types

All anonymous types are automatically derived from System.Object and, therefore, support each of the
members provided by this base class. Given this, you could invoke ToString(), GetHashCode(), Equals(),
or GetType() on the implicitly typed myCar object. Assume your Program class defines the following static
helper function:

static void ReflectOverAnonymousType(object obj)

{
Console.WriteLine("obj is an instance of: {0}", obj.GetType().Name);
Console.WriteLine("Base class of {0} is {1}", obj.GetType().Name, obj.GetType().BaseType);
Console.WriteLine("obj.ToString() == {0}", obj.ToString());
Console.WriteLine("obj.GetHashCode() == {0}", obj.GetHashCode());
Console.WriteLine();

432

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

Now assume you invoke this method from Main(), passing in the myCar object as the parameter, like so:

static void Main(string[] args)

{

Console.WriteLine("***** Fun with Anonymous Types *¥*¥¥\n");

// Make an anonymous type representing a car.
var myCar = new {Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55};

// Reflect over what the compiler generated.
ReflectOverAnonymousType(myCar);

Console.ReadlLine();

}

The output will look similar to the following:

*RREE Fun with Anonymous Types *¥¥¥*

obj is an instance of: <>f_AnonymousType0O'3

Base class of <>f__AnonymousType0~3 is System.Object

obj.ToString() = { Color = Bright Pink, Make = Saab, CurrentSpeed = 55 }
obj.GetHashCode() = -439083487

First, notice that, in this example, the myCar object is of type <>f AnonymousType0O" 3 (your name may
differ). Remember that the assigned type name is completely determined by the compiler and is not directly
accessible in your C# codebase.

Perhaps most important, notice that each name-value pair defined using the object initialization syntax
is mapped to an identically named read-only property and a corresponding private read-only backing field.
The following C# code approximates the compiler-generated class used to represent the myCar object
(which again can be verified using ildasm.exe):

internal sealed class <>f__AnonymousTypeO<<Color>j_ TPar,
<Make>j TPar, <CurrentSpeed>j TPar>
{

// Read-only fields.

private readonly <Color>j TPar <Color>i_ Field;

private readonly <CurrentSpeed>j_ TPar <CurrentSpeed>i_ Field;
private readonly <Make>j_ TPar <Make>i_ Field;

// Default constructor.
public <>f AnonymousTypeO(<Color>j TPar Color,
<Make>j_ TPar Make, <CurrentSpeed>j_ TPar CurrentSpeed);
// Overridden methods.
public override bool Equals(object value);
public override int GetHashCode();
public override string ToString();

433

CHAPTER 11 ADVANCED C# LANGUAGE FEATURES

// Read-only properties.

public <Color>j TPar Color { get; }

public <CurrentSpeed>j_ TPar CurrentSpeed { get; }
public <Make>j_ TPar Make { get; }

The Implementation of ToString() and GetHashCode()

All anonymous types automatically derive from System.Object and are provided with an overridden version
of Equals(), GetHashCode(), and ToString(). The ToString() implementation simply builds a string from
each name-value pair. Here’s an example:

public override string ToString()

{
StringBuilder builder = new StringBuilder();
builder.Append("{ Color = ");
builder.Append(this.<Color>i Field);
builder.Append(", Make = ");
builder.Append(this.<Make>i Field);
builder.Append(", CurrentSpeed = ");
builder.Append(this.<CurrentSpeed>i Field);
builder.Append(" }");
return builder.ToString();

The GetHashCode () implementation computes a hash value using each anonymous type’s
member variables as input to the System.Collections.Generic.EqualityComparer<T> type. Using this
implementation of GetHashCode (), two anonymous types will yield the same hash value if (and only if)
they have the same set of properties that have been assigned the same values. Given this implementation,
anonymous types are well-suited to be contained within a Hashtable container.

The Semantics of Equality for Anonymous Types

While the implementation of the overridden ToString() and GetHashCode () methods is fairly
straightforward, you might be wondering how the Equals () method has been implemented. For example, if
you were to define two “anonymous cars” variables that specify the same name-value pairs, would these two
variables be considered equal? To see the results firsthand, update your Program type with the following new
method:

static void EqualityTest()

{
// Make 2 anonymous classes with identical name/value pairs.
var firstCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };
var secondCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };

// Are they considered equal when using Equals()?

if (firstCar.Equals(secondCar))
Console.WriteLine("Same anonymous object!");

else
Console.WriteLine("Not the same anonymous object!");

434

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

// Are they considered equal when using ==?
if (firstCar == secondCar)
Console.WriteLine("Same anonymous object!");
else
Console.WriteLine("Not the same anonymous object!");

// Are these objects the same underlying type?

if (firstCar.GetType().Name == secondCar.GetType().Name)
Console.WriteLine("We are both the same type!");

else
Console.WriteLine("We are different types!");

// Show all the details.
Console.WritelLine();
ReflectOverAnonymousType(firstCar);
ReflectOverAnonymousType(secondCar);

Assuming you have called this method from within Main(), here is the (somewhat surprising) output:

My car is a Bright Pink Saab.
You have a Black BMW going 90 MPH
ToString() == { Make = BMW, Color = Black, Speed = 90 }

Same anonymous object!
Not the same anonymous object!
We are both the same type!

obj is an instance of: <>f_AnonymousType0O'3
Base class of <>f__AnonymousType0~3 is System.Object

obj.ToString() == { Color = Bright Pink, Make = Saab, CurrentSpeed = 55 }
obj.GetHashCode() == -439083487

obj is an instance of: <>f__AnonymousTypeO3

Base class of <>f_AnonymousType0~3 is System.Object

obj.ToString() == { Color = Bright Pink, Make = Saab, CurrentSpeed = 55 }

obj.GetHashCode() == -439083487

When you run this test code, you will see that the first conditional test where you call Equals () returns
true and, therefore, the message “Same anonymous object!” prints out to the screen. This is because the
compiler-generated Equals () method uses value-based semantics when testing for equality (e.g., checking
the value of each field of the objects being compared).

However, the second conditional test, which makes use of the C# equality operator (==), prints out
“Not the same anonymous object!” This might seem at first glance to be a bit counterintuitive. This result
is because anonymous types do not receive overloaded versions of the C# equality operators (== and !=).
Given this, when you test for equality of anonymous types using the C# equality operators (rather than the
Equals() method), the references, not the values maintained by the objects, are being tested for equality.

Last but not least, in the final conditional test (where you examine the underlying type name), you
find that the anonymous types are instances of the same compiler-generated class type (in this example,
<>t AnonymousTypeO" 3) because firstCar and secondCar have the same properties (Color, Make, and
CurrentSpeed).

435

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

This illustrates an important but subtle point: the compiler will generate a new class definition only
when an anonymous type contains unique names of the anonymous type. Thus, if you declare identical
anonymous types (again, meaning the same names) within the same assembly, the compiler generates only
a single anonymous type definition.

Anonymous Types Containing Anonymous Types

It is possible to create an anonymous type that is composed of other anonymous types. For example,
assume you want to model a purchase order that consists of a timestamp, a price point, and the automobile
purchased. Here is a new (slightly more sophisticated) anonymous type representing such an entity:

// Make an anonymous type that is composed of another.

var purchaseltem = new {
TimeBought = DateTime.Now,
ItemBought = new {Color = "Red", Make = "Saab", CurrentSpeed = 55},
Price = 34.000};

ReflectOverAnonymousType(purchaseItem);

At this point, you should understand the syntax used to define anonymous types, but you might still
be wondering exactly where (and when) to use this new language feature. To be blunt, anonymous type
declarations should be used sparingly, typically only when making use of the LINQ technology set
(see Chapter 12). You would never want to abandon the use of strongly typed classes/structures simply for
the sake of doing so, given anonymous types’ numerous limitations, which include the following:

e Youdon't control the name of the anonymous type.
e Anonymous types always extend System.0Object.
e Thefields and properties of an anonymous type are always read-only.

e Anonymous types cannot support events, custom methods, custom operators, or
custom overrides.

e Anonymous types are always implicitly sealed.
e Anonymous types are always created using the default constructor.

However, when programming with the LINQ technology set, you will find that in many cases this syntax
can be helpful when you want to quickly model the overall shape of an entity rather than its functionality.

Source Code You can find the AnonymousTypes project in the Chapter 11 subdirectory.

Working with Pointer Types

And now for the final topic of the chapter, which most likely will be the least used of all C# features for the
vast majority of your .NET projects.

436

http://dx.doi.org/10.1007/978-1-4842-3018-3_12
http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

Note In the examples that follow, I’'m assuming you have some background in C++ pointer manipulation.
If this is not true, feel free to skip this topic entirely. Using pointers will not be a common task for the vast
majority of C# applications.

In Chapter 4, you learned that the .NET platform defines two major categories of data: value types and
reference types. Truth be told, however, there is a third category: pointer types. To work with pointer types,
you get specific operators and keywords that allow you to bypass the CLR’s memory-management scheme
and take matters into your own hands (see Table 11-2).

Table 11-2. Pointer-Centric C# Operators and Keywords

Operator/Keyword Meaning in Life

* This operator is used to create a pointer variable (i.e., a variable that represents
a direct location in memory). As in C++, this same operator is used for pointer
indirection.

& This operator is used to obtain the address of a variable in memory.

-> This operator is used to access fields of a type that is represented by a pointer

(the unsafe version of the C# dot operator).

[] This operator (in an unsafe context) allows you to index the slot pointed to by a
pointer variable (if you're a C++ programmer, you will recall the interplay between
a pointer variable and the [] operator).

++, -- In an unsafe context, the increment and decrement operators can be applied to
pointer types.

+ - In an unsafe context, the addition and subtraction operators can be applied to
pointer types.

==,1=,¢,5,¢=5,=> In an unsafe context, the comparison and equality operators can be applied to
pointer types.

stackalloc In an unsafe context, the stackalloc keyword can be used to allocate C# arrays
directly on the stack.

fixed In an unsafe context, the fixed keyword can be used to temporarily fix a variable
so that its address can be found.

Now, before digging into the details, let me again point out that you will seldom if ever need to make use
of pointer types. Although C# does allow you to drop down to the level of pointer manipulations, understand
that the .NET runtime has absolutely no clue of your intentions. Thus, if you mismanage a pointer, you are
the one in charge of dealing with the consequences. Given these warnings, when exactly would you need to
work with pointer types? There are two common situations:

¢ You are looking to optimize select parts of your application by directly manipulating
memory outside the management of the CLR.

e You are calling methods of a C-based .d11 or COM server that demand pointer
types as parameters. Even in this case, you can often bypass pointer types in favor of
the System.IntPtr type and members of the System.Runtime.InteropServices.
Marshal type.

437

http://dx.doi.org/10.1007/978-1-4842-3018-3_4

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

In the event that you do decide to make use of this C# language feature, you are required to inform the
C# compiler (csc.exe) of your intentions by enabling your project to support “unsafe code.” To do so at the
command line, simply supply the following /unsafe flag as an argument:

csc /unsafe *.cs
From Visual Studio, you will need to access your project’s Properties page and select the Allow Unsafe

Code box on the Build tab (see Figure 11-2). To experiment with pointer types, create a new Console
Application project named UnsafeCode, and make sure you enable the Allow unsafe code setting.

UnsafeCode* + X BIGhIETnRes Object Browser
Application ; . =
h Configuration: Active (Debug) v
) Platform: |Active (Any CPU) v
Build Events d
Debug General A
Resources o Tl
Conditional compilation symbols:
Services
Define DEBUG constant
Settings

Define TRACE constant
Reference Paths

Signing Platform target: Any CPU v

Security [v] Prefer 32-bit

Publish [v] Allow unsafe code

Code Analysis [] Optimize code <
< >

Figure 11-2. Enabling unsafe code using Visual Studio

The unsafe Keyword

When you want to work with pointers in C#, you must specifically declare a block of “unsafe code” using the
unsafe keyword (any code that is not marked with the unsafe keyword is considered “safe” automatically).
For example, the following Program class declares a scope of unsafe code within the safe Main() method:

class Program

{

static void Main(string[] args)

{

unsafe

{
// Work with pointer types here!

}

// Can't work with pointers here!

}
}

438

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

In addition to declaring a scope of unsafe code within a method, you can build structures, classes, type
members, and parameters that are “unsafe.” Here are a few examples to gnaw on (no need to define the Node
or Node2 types in your current project):

// This entire structure is "unsafe" and can
// be used only in an unsafe context.
unsafe struct Node
{
public int Value;
public Node* Left;
public Node* Right;
}

// This struct is safe, but the Node2* members

// are not. Technically, you may access "Value" from

// outside an unsafe context, but not "Left" and "Right".
public struct Node2

{

public int Value;

// These can be accessed only in an unsafe context!
public unsafe Node2* Left;
public unsafe Node2* Right;

Methods (static or instance level) may be marked as unsafe as well. For example, assume you know that
a particular static method will make use of pointer logic. To ensure that this method can be called only from
an unsafe context, you could define the method as follows:

static unsafe void SquareIntPointer(int* myIntPointer)

{
// Square the value just for a test.

*myIntPointer *= *myIntPointer;

}
The configuration of your method demands that the caller invoke SquareIntPointer() as follows:

static void Main(string[] args)

{

unsafe

{

int myInt = 10;
// OK, because we are in an unsafe context.
SquareIntPointer(&myInt);

Console.WriteLine("myInt: {0}", myInt);
}

int myInt2 = 5;

439

CHAPTER 11 ADVANCED C# LANGUAGE FEATURES

// Compiler error! Must be in unsafe context!
SquareIntPointer(&myInt2);
Console.WriteLine("myInt: {0}", myInt2);

}

If you would rather not force the caller to wrap the invocation within an unsafe context, you could
update Main() with the unsafe keyword. In this case, the following code would compile:

static unsafe void Main(string[] args)

{
int myInt2 = 5;
SquareIntPointer(&myInt2);
Console.WriteLine("myInt: {0}", myInt2);

}

If you run this Main() method, you will see the following output:

myInt: 25

Working with the * and & Operators

After you have established an unsafe context, you are then free to build pointers to data types using the

* operator and obtain the address of what is being pointed to using the & operator. Unlike in C or C++, in
C# the * operator is applied to the underlying type only, not as a prefix to each pointer variable name. For
example, consider the following code, which illustrates both the correct and incorrect ways to declare
pointers to integer variables:

// No! This is incorrect under Ci#!
int *pi, *pj;
// Yes! This is the way of Ci#.
int* pi, pj;
Consider the following unsafe method:

static unsafe void PrintValueAndAddress()

{
int myInt;

// Define an int pointer, and
// assign it the address of myInt.
int* ptrToMyInt = 8myInt;

// Assign value of myInt using pointer indirection.
*ptrToMyInt = 123;

// Print some stats.

Console.WritelLine("Value of myInt {0}", myInt);
Console.WriteLine("Address of myInt {0:X}", (int)&ptrToMyInt);

440

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

An Unsafe (and Safe) Swap Function

Of course, declaring pointers to local variables simply to assign their value (as in the previous example) is
never required and not altogether useful. To illustrate a more practical example of unsafe code, assume you
want to build a swap function using pointer arithmetic.

public unsafe static void UnsafeSwap(int* i, int* j)

{
int temp = *i;
*{ = *j;
*j = temp;

Very C-like, don’t you think? However, given your work previously, you should be aware that you could
write the following safe version of your swap algorithm using the C# ref keyword:

public static void SafeSwap(ref int i, ref int j)

{
int temp = i;
i=3;
j = temp;

The functionality of each method is identical, thus reinforcing the point that direct pointer
manipulation is not a mandatory task under C#. Here is the calling logic using a safe Main(), with an unsafe
context:

static void Main(string[] args)

{
Console.WriteLine("***** Calling method with unsafe code **¥¥*");
// Values for swap.
int i =10, j = 20;
// Swap values "safely."
Console.WriteLine("\n*¥*¥* Safe swap *ikk*"),
Console.WriteLine("Values before safe swap: i = {0}, j = {1}", i, j);
SafeSwap(ref i, ref j);
Console.WriteLine("Values after safe swap: i = {0}, j = {1}", i, J);
// Swap values "unsafely."
Console.WriteLine("\n*¥¥** Unsafe swap *k¥**");
Console.WriteLine("Values before unsafe swap: i = {0}, j = {1}", i, j);
unsafe { UnsafeSwap(&i, &j); }
Console.WritelLine("Values after unsafe swap: i = {0}, j = {1}", i, j);
Console.ReadLine();

}

441

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

Field Access via Pointers (the -> Operator)

Now assume you have defined a simple, safe Point structure, as follows:

struct Point

{
public int x;
public int y;

public override string ToString() => $"({x}, {y})";
}

If you declare a pointer to a Point type, you will need to make use of the pointer field-access operator
(represented by ->) to access its public members. As shown in Table 11-2, this is the unsafe version of
the standard (safe) dot operator (.). In fact, using the pointer indirection operator (*), it is possible to
dereference a pointer to (once again) apply the dot operator notation. Check out the unsafe method:

static unsafe void UsePointerToPoint()
{

// Access members via pointer.

Point point;

Point* p = 8point;

p->x = 100;

p->y = 200;

Console.WriteLine(p->ToString());

// Access members via pointer indirection.
Point point2;

Point* p2 = 8point2;

(*p2).x = 100;

(*p2).y = 200;
Console.WriteLine((*p2).ToString());

The stackalloc Keyword

In an unsafe context, you may need to declare a local variable that allocates memory directly from the
call stack (and is, therefore, not subject to .NET garbage collection). To do so, C# provides the stackalloc
keyword, which is the C# equivalent to the _alloca function of the C runtime library. Here is a simple
example:

static unsafe void UnsafeStackAlloc()
{

char* p = stackalloc char[256];
for (int k = 0; k < 256; k++)
pIK] = (char)k;

442

CHAPTER 11 © ADVANCED C# LANGUAGE FEATURES

Pinning a Type via the fixed Keyword

Asyou saw in the previous example, allocating a chunk of memory within an unsafe context may be
facilitated via the stackalloc keyword. By the very nature of this operation, the allocated memory is cleaned
up as soon as the allocating method has returned (as the memory is acquired from the stack). However,
assume a more complex example. During our examination of the -> operator, you created a value type
named Point. Like all value types, the allocated memory is popped off the stack once the executing scope
has terminated. For the sake of argument, assume Point was instead defined as a reference type, like so:

class PointRef // <= Renamed and retyped.
{

public int x;

public int y;

public override string ToString() => $"({x}, {y})";
}

Asyou are aware, if the caller declares a variable of type Point, the memory is allocated on the garbage-
collected heap. The burning question then becomes, “What if an unsafe context wants to interact with this
object (or any object on the heap)?” Given that garbage collection can occur at any moment, imagine the
problems encountered when accessing the members of Point at the very point in time such a sweep of
the heap is underway. Theoretically, it is possible that the unsafe context is attempting to interact with a
member that is no longer accessible or has been repositioned on the heap after surviving a generational
sweep (which is an obvious problem).

To lock a reference type variable in memory from an unsafe context, C# provides the fixed keyword.
The fixed statement sets a pointer to a managed type and “pins” that variable during the execution of
the code. Without fixed, pointers to managed variables would be of little use, since garbage collection
could relocate the variables unpredictably. (In fact, the C# compiler will not allow you to set a pointer to a
managed variable except in a fixed statement.)

Thus, if you create a PointRef object and want to interact with its members, you must write the
following code (or receive a compiler error):

public unsafe static void UseAndPinPoint()

{ PointRef pt = new PointRef
{
X =5,
y==6
};

// Pin pt in place so it will not
// be moved or GC-ed.

fixed (int* p = &pt.x)

{

// Use int* variable here!

}

// pt is now unpinned, and ready to be GC-ed once
// the method completes.
Console.WriteLine ("Point is: {0}", pt);

443

CHAPTER 11 = ADVANCED C# LANGUAGE FEATURES

In a nutshell, the fixed keyword allows you to build a statement that locks a reference variable in
memory, such that its address remains constant for the duration of the statement (or scope block). Any time
you interact with a reference type from within the context of unsafe code, pinning the reference is a must.

The sizeof Keyword

The final unsafe-centric C# keyword to consider is sizeof. As in C++, the C# sizeof keyword is used to
obtain the size in bytes of an intrinsic data type, but not a custom type, unless within an unsafe context.
For example, the following method does not need to be declared “unsafe” as all arguments to the sizeof
keyword are intrinsic types:

static void UseSizeOfOperator()
{

Console.WritelLine("The size of short is {0}.", sizeof(short));
Console.WritelLine("The size of int is {0}.", sizeof(int));
Console.WriteLine("The size of long is {0}.", sizeof(long));

}

However, if you want to get the size of your custom Point structure, you need to update this method as
so (note the unsafe keyword has been added):

unsafe static void UseSizeOfOperator()

{

Console.WritelLine("The size of Point is {0}.", sizeof(Point));

}

Source Code You can find the UnsafeCode project in the Chapter 11 subdirectory.

That wraps up the look at some of the more advanced features of the C# programming language. To
make sure we are all on the same page here, I again must say that a majority of your .NET projects might
never need to directly use these features (especially pointers). Nevertheless, as you will see in later chapters,
some topics are quite useful, if not required, when working with the LINQ APIs, most notably extension
methods and anonymous types.

Summary

The purpose of this chapter was to deepen your understanding of the C# programming language. First, you
investigated various advanced type construction techniques (indexer methods, overloaded operators, and
custom conversion routines).

Next, you examined the role of extension methods and anonymous types. As you'll see in some detail in
the next chapter, these features are useful when working with LINQ-centric APIs (though you can use them
anywhere in your code, should they be useful). Recall that anonymous methods allow you to quickly model
the “shape” of a type, while extension methods allow you to tack on new functionality to types, without the
need to subclass.

You spent the remainder of this chapter examining a small set of lesser-known keywords (sizeof, unsafe,
and so forth) and during the process learned how to work with raw pointer types. As stated throughout the
examination of pointer types, the vast majority of your C# applications will never need to use them.

444

http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 12

LINQ to Objects

Regardless of the type of application you are creating using the .NET platform, your program will certainly
need to access some form of data as it executes. To be sure, data can be found in numerous locations,
including XML files, relational databases, in-memory collections, and primitive arrays. Historically speaking,
based on the location of said data, programmers needed to make use of different and unrelated APIs. The
Language Integrated Query (LINQ) technology set, introduced initially in .NET 3.5, provides a concise,
symmetrical, and strongly typed manner to access a wide variety of data stores. In this chapter, you will
begin your investigation of LINQ by focusing on LINQ to Objects.

Before you dive into LINQ to Objects proper, the first part of this chapter quickly reviews the key C#
programming constructs that enable LINQ. As you work through this chapter, you will find that implicitly
typed local variables, object initialization syntax, lambda expressions, extension methods, and anonymous
types will be quite useful (if not occasionally mandatory).

After this supporting infrastructure is reviewed, the remainder of the chapter will introduce you to the
LINQ programming model and its role in the .NET platform. Here, you will come to learn the role of query
operators and query expressions, which allow you to define statements that will interrogate a data source to
yield the requested result set. Along the way, you will build numerous LINQ examples that interact with data
contained within arrays as well as various collection types (both generic and nongeneric) and understand
the assemblies, namespaces, and types that represent the LINQ to Objects APIL.

Note The information in this chapter is the foundation for future sections and chapters of this book,
including Parallel LINQ (Chapter 19), Entity Framework (Chapter 22), and Entity Framework Core (Chapter 30).

LINQ-Specific Programming Constructs

From a high level, LINQ can be understood as a strongly typed query language, embedded directly into the
grammar of C#. Using LINQ, you can build any number of expressions that have a look and feel similar to
that of a database SQL query. However, a LINQ query can be applied to any number of data stores, including
stores that have nothing to do with a literal relational database.

Note Although LINQ queries look similar to SQL queries, the syntax is nofidentical. In fact, many LINQ
queries seem to be the exact opposite format of a similar database query! If you attempt to map LINQ directly
to SQL, you will surely become frustrated. To keep your sanity, | recommend you try your best to regard LINQ
queries as unique statements, which just “happen to look” similar to SQL.

© Andrew Troelsen and Philip Japikse 2017 445
A. Troelsen and P. Japikse, Pro C# 7, https://doi.org/10.1007/978-1-4842-3018-3_12

https://doi.org/10.1007/978-1-4842-3018-3_12
http://dx.doi.org/10.1007/978-1-4842-3018-3_19
http://dx.doi.org/10.1007/978-1-4842-3018-3_22
http://dx.doi.org/10.1007/978-1-4842-3018-3_30

CHAPTER 12 © LINQ TO OBJECTS

When LINQ was first introduced to the .NET platform in version 3.5, the C# and VB languages were each
expanded with a large number of new programming constructs used to support the LINQ technology set.
Specifically, the C# language uses the following core LINQ-centric features:

e Implicitly typed local variables

e Object/collection initialization syntax
e Lambda expressions

e Extension methods

e Anonymous types

These features have already been explored in detail within various chapters of the text. However, to get
the ball rolling, let’s quickly review each feature in turn, just to make sure we are all in the proper mind-set.

Note Because the following sections are reviews of material covered elsewhere in the book, | have not
included a C# code project for this content.

Implicit Typing of Local Variables

In Chapter 3, you learned about the var keyword of C#. This keyword allows you to define a local variable
without explicitly specifying the underlying data type. The variable, however, is strongly typed, as the
compiler will determine the correct data type based on the initial assignment. Recall this code example from
Chapter 3:

static void DeclareImplicitVars()
{
// Implicitly typed local variables.
var myInt = 0;
var myBool = true;
var myString = "Time, marches on...";

// Print out the underlying type.

Console.WriteLine("myInt is a: {0}", myInt.GetType().Name);
Console.WriteLine("myBool is a: {0}", myBool.GetType().Name);
Console.WriteLine("myString is a: {0}", myString.GetType().Name);

This language feature is helpful, and often mandatory, when using LINQ. As you will see during this
chapter, many LINQ queries will return a sequence of data types, which are not known until compile time.
Given that the underlying data type is not known until the application is compiled, you obviously can’t
declare a variable explicitly!

Object and Collection Initialization Syntax

Chapter 5 explored the role of object initialization syntax, which allows you to create a class or structure
variable and to set any number of its public properties in one fell swoop. The end result is a compact
(yet still easy on the eyes) syntax that can be used to get your objects ready for use. Also recall from Chapter 9,

446

http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_3
http://dx.doi.org/10.1007/978-1-4842-3018-3_5
http://dx.doi.org/10.1007/978-1-4842-3018-3_9

CHAPTER 12 LINQ TO OBJECTS

the C# language allows you to use a similar syntax to initialize collections of objects. Consider the following
code snippet, which uses collection initialization syntax to fill a List<T> of Rectangle objects, each of which
maintains two Point objects to represent an (x,y) position:

List<Rectangle> mylListOfRects = new List<Rectangle>
{

new Rectangle {TopLeft = new Point { X = 10, Y = 10 },
BottomRight = new Point { X = 200, Y = 200}},
new Rectangle {TopLeft = new Point { X =2, Y =2 },
BottomRight = new Point { X = 100, Y = 100}},
new Rectangle {TopLeft = new Point { X =5, Y =5},

BottomRight = new Point { X = 90, Y = 75}}
b

While you are never required to use collection/object initialization syntax, doing so results in a more
compact codebase. Furthermore, this syntax, when combined with implicit typing of local variables, allows
you to declare an anonymous type, which is useful when creating a LINQ projection. You'll learn about LINQ
projections later in this chapter.

Lambda Expressions

The C# lambda operator (=>)was fully explored in Chapter 10. Recall that this operator allows you to build a
lambda expression, which can be used any time you invoke a method that requires a strongly typed delegate
as an argument. Lambdas greatly simplify how you work with .NET delegates, in that they reduce the
amount of code you have to author by hand. Recall that a lambda expression can be broken down into the
following usage:

(ArgumentsToProcess) => { StatementsToProcessThem }

In Chapter 10, I walked you through how to interact with the FindA11() method of the generic
List<T> class using three different approaches. After working with the raw Predicate<T> delegate and a C#
anonymous method, you eventually arrived with the following (extremely concise) iteration that used the
following lambda expression:

static void LambdaExpressionSyntax()

{
// Make a list of integers.

List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// C# lambda expression.
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)

{

Console.Write("{o}\t", evenNumber);

}

Console.Writeline();

447

http://dx.doi.org/10.1007/978-1-4842-3018-3_10
http://dx.doi.org/10.1007/978-1-4842-3018-3_10

CHAPTER 12 © LINQ TO OBJECTS

Lambdas will be useful when working with the underlying object model of LINQ. As you will soon find
out, the C# LINQ query operators are simply a shorthand notation for calling true-blue methods on a class
named System.Linqg.Enumerable. These methods typically always require delegates (the Func<> delegate in
particular) as parameters, which are used to process your data to yield the correct result set. Using lambdas,
you can streamline your code and allow the compiler to infer the underlying delegate.

Extension Methods

C# extension methods allow you to tack on new functionality to existing classes without the need to subclass.
As well, extension methods allow you to add new functionality to sealed classes and structures, which

could never be subclassed in the first place. Recall from Chapter 11, when you author an extension method,
the first parameter is qualified with the this keyword and marks the type being extended. Also recall that
extension methods must always be defined within a static class and must, therefore, also be declared using
the static keyword. Here’s an example:

namespace MyExtensions

static class ObjectExtensions
{
// Define an extension method to System.Object.
public static void DisplayDefiningAssembly(this object obj)
{
Console.WriteLine("{0} lives here:\n\t->{1}\n", obj.GetType().Name,
Assembly.GetAssembly(obj.GetType()));

To use this extension, an application must import the namespace defining the extension (and possibly
add a reference to the external assembly). At this point, simply import the defining namespace and code
away.

static void Main(string[] args)
{
// Since everything extends System.Object, all classes and structures
// can use this extension.
int myInt = 12345678;
myInt.DisplayDefiningAssembly();

System.Data.DataSet d = new System.Data.DataSet();
d.DisplayDefiningAssembly();
Console.ReadlLine();

When you are working with LINQ, you will seldom, if ever, be required to manually build your own
extension methods. However, as you create LINQ query expressions, you will actually be making use of
numerous extension methods already defined by Microsoft. In fact, each C# LINQ query operator is a
shorthand notation for making a manual call on an underlying extension method, typically defined by the
System.Ling.Enumerable utility class.

448

http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 12 LINQ TO OBJECTS

Anonymous Types

The final C# language feature I'd like to quickly review is that of anonymous types, which was explored

in Chapter 11. This feature can be used to quickly model the “shape” of data by allowing the compiler to
generate a new class definition at compile time, based on a supplied set of name-value pairs. Recall that
this type will be composed using value-based semantics, and each virtual method of System.0Object will be
overridden accordingly. To define an anonymous type, declare an implicitly typed variable and specify the
data’s shape using object initialization syntax.

// Make an anonymous type that is composed of another.

var purchaseItem = new {
TimeBought = DateTime.Now,
ItemBought = new {Color = "Red", Make = "Saab", CurrentSpeed = 55},
Price = 34.000};

LINQ makes frequent use of anonymous types when you want to project new forms of data on the fly.
For example, assume you have a collection of Person objects and want to use LINQ to obtain information on
the age and Social Security number of each. Using a LINQ projection, you can allow the compiler to generate
a new anonymous type that contains your information.

Understanding the Role of LINQ

That wraps up the quick review of the C# language features that allow LINQ to work its magic. However,

why have LINQ in the first place? Well, as software developers, it is hard to deny that the vast majority of

our programming time is spent obtaining and manipulating data. When speaking of “data,” it is easy to
immediately envision information contained within relational databases. However, another popular location
for data is within XML documents or simple text files.

Data can be found in numerous places beyond these two common homes for information. For instance,
say you have an array or generic List<T> type containing 300 integers and you want to obtain a subset that
meets a given criterion (e.g., only the odd or even members in the container, only prime numbers, only
nonrepeating numbers greater than 50). Or perhaps you are making use of the reflection APIs and need to
obtain only metadata descriptions for each class deriving from a particular parent class within an array of
Types. Indeed, data is everywhere.

Prior to .NET 3.5, interacting with a particular flavor of data required programmers to use very diverse
APIs. Consider, for example, Table 12-1, which illustrates several common APIs used to access various types
of data (I'm sure you can think of many other examples).

Table 12-1. Ways to Manipulate Various Types of Data

The Data You Want How to Obtain It

Relational data System.Data.dll, System.Data.SqlClient.dll, and so on

XML document data System.Xml.d1ll

Metadata tables The System.Reflection namespace

Collections of objects System.Array and the System.Collections/System.Collections.Generic
namespaces

449

http://dx.doi.org/10.1007/978-1-4842-3018-3_11

CHAPTER 12 © LINQ TO OBJECTS

Of course, nothing is wrong with these approaches to data manipulation. In fact, you can (and will)
certainly make direct use of ADO.NET, the XML namespaces, reflection services, and the various collection
types. However, the basic problem is that each of these APIs is an island unto itself, which offers little
in the way of integration. True, it is possible (for example) to save an ADO.NET DataSet as XML and
then manipulate it via the System.Xml namespaces, but nonetheless, data manipulation remains rather
asymmetrical.

The LINQ API is an attempt to provide a consistent, symmetrical manner in which programmers can
obtain and manipulate “data” in the broad sense of the term. Using LINQ, you are able to create directly
within the C# programming language constructs called query expressions. These query expressions are based
on numerous query operators that have been intentionally designed to look and feel similar (but not quite
identical) to a SQL expression.

The twist, however, is that a query expression can be used to interact with numerous types of data—
even data that has nothing to do with a relational database. Strictly speaking, “LINQ” is the term used to
describe this overall approach to data access. However, based on where you are applying your LINQ queries,
you will encounter various terms, such as the following:

e LINQ to Objects: This term refers to the act of applying LINQ queries to arrays and
collections.

e LINQ to XML: This term refers to the act of using LINQ to manipulate and query
XML documents.

e LINQ to DataSet: This term refers to the act of applying LINQ queries to ADO.NET
DataSet objects.

e LINQ to Entities: This aspect of LINQ allows you to make use of LINQ queries within
the ADO.NET Entity Framework (EF) API.

e Parallel LINQ (aka PLINQ): This allows for parallel processing of data returned from
a LINQ query.

Today, LINQ is an integral part of the .NET base class libraries, managed languages, and Visual
Studio itself.

LINQ Expressions Are Strongly Typed

It is also important to point out that a LINQ query expression (unlike a traditional SQL statement) is
strongly typed. Therefore, the C# compiler will keep you honest and make sure that these expressions
are syntactically well-formed. Tools such as Visual Studio can use metadata for useful features such as
IntelliSense, autocompletion, and so forth.

The Core LINQ Assemblies

As mentioned in Chapter 2, the New Project dialog of Visual Studio has the option of selecting which version
of the .NET platform you want to compile against. When you opt to compile against .NET 3.5 or higher, each
of the project templates will automatically reference the key LINQ assemblies, which can be viewed using
Solution Explorer. Table 12-2 documents the role of the key LINQ assemblies. However, you will encounter
additional LINQ libraries over the remainder of this book.

450

http://dx.doi.org/10.1007/978-1-4842-3018-3_2

CHAPTER 12 LINQ TO OBJECTS

Table 12-2. Core LINQ-Centric Assemblies

Assembly Meaning in Life

System.Core.dll Defines the types that represent the core LINQ API. This is the
one assembly you must have access to if you want to use any
LINQ AP], including LINQ to Objects.

System.Data.DataSetExtensions.dll Defines a handful of types to integrate ADO.NET types into the
LINQ programming paradigm (LINQ to DataSet).

System.Xml.Ling.dll Provides functionality for using LINQ with XML document
data (LINQ to XML).

To work with LINQ to Objects, you must make sure that every C# code file that contains LINQ queries
imports the System.Linq namespace (primarily defined within System.Core.d11). If you do not do so, you
will run into a number of problems. As a good rule of thumb, if you see a compiler error looking similar to
this:

Error 1 Could not find an implementation of the query pattern for source type 'int[]'.
'Where' not found. Are you missing a reference to 'System.Core.dll' or a using directive
for 'System.Linq'?

the chances are extremely good that your C# file does not have the following using directive:

using System.Ling;

Applying LINQ Queries to Primitive Arrays

To begin examining LINQ to Objects, let’s build an application that will apply LINQ queries to various array
objects. Create a Console Application project named LinqOverArray, and define a static helper method
within the Program class named QueryOverStrings().In this method, create a string array containing six
or so items of your liking (here I listed a batch of video games in my library). Make sure to have at least two
entries that contain numerical values and a few that have embedded spaces.

static void QueryOverStrings()

{

// Assume we have an array of strings.
string[] currentVideoGames = {"Morrowind", "Uncharted 2", "Fallout 3", "Daxter",
"System Shock 2"};

}
Now, update Main() to invoke QueryOverStrings().

static void Main(string[] args)

{

Console.WriteLine("***** Fun with LINQ to Objects *¥***\n");
QueryOverStrings();
Console.ReadlLine();

451

CHAPTER 12 © LINQ TO OBJECTS

When you have any array of data, it is common to extract a subset of items based on a given
requirement. Maybe you want to obtain only the subitems that contain a number (e.g., System Shock 2,
Uncharted 2, and Fallout 3), have more or less than some number of characters, or don’t contain embedded
spaces (e.g., Morrowind or Daxter). While you could certainly perform such tasks using members of the
System.Array type and a bit of elbow grease, LINQ query expressions can greatly simplify the process.

Going on the assumption that you want to obtain from the array only items that contain an embedded
blank space and you want these items listed in alphabetical order, you could build the following LINQ query
expression:

static void QueryOverStrings()

{
// Assume we have an array of strings.
string[] currentVideoGames = {"Morrowind", "Uncharted 2", "Fallout 3", "Daxter",
"System Shock 2"};
// Build a query expression to find the items in the array
// that have an embedded space.
IEnumerable<string> subset = from g in currentVideoGames where g.Contains(" ") orderby g
select g;
// Print out the results.
foreach (string s in subset)
Console.WritelLine("Item: {0}", s);
}

Notice that the query expression created here makes use of the from, in, where, orderby, and select
LINQ query operators. You will dig into the formalities of query expression syntax later in this chapter.
However, even now you should be able to read this statement roughly as “Give me the items inside of
currentVideoGames that contain a space, ordered alphabetically.”

Here, each item that matches the search criteria has been given the name g (as in “game”); however, any
valid C# variable name would do:

IEnumerable<string> subset = from game in currentVideoGames
where game.Contains(" ") orderby
game select game;

Notice that the returned sequence is held in a variable named subset, typed as a type that implements
the generic version of IEnumerable<T>, where T is of type System.String (after all, you are querying an array
of strings). After you obtain the result set, you then simply print out each item using a standard foreach
construct. If you run your application, you will find the following output:

**xxx Fun with LINQ to Objects *¥ii*
Item: Fallout 3

Item: System Shock 2

Item: Uncharted 2

452

CHAPTER 12 LINQ TO OBJECTS

Once Again, Using Extension Methods

The LINQ syntax used earlier (and the rest of this chapter) is referred to as LINQ query expressions, which is a
format that is similar to SQL but (somewhat annoying) different. There is another syntax that uses extension
methods. Most LINQ statements can be written using either format; however, some of the more complex
queries will require using query expressions.

Create a new method named QueryOverStringshWithExtensionMethods () and enter the following code:

static void QueryOverStringsWithExtensionMethods()

{
// Assume we have an array of strings.
string[] currentVideoGames = {"Morrowind", "Uncharted 2", "Fallout 3", "Daxter",
"System Shock 2"};

// Build a query expression to find the items in the array
// that have an embedded space.
IEnumerable<string> subset =
currentVideoGames.Where(g => g.Contains(" ")).OrderBy(g => g).Select(g =» g);

// Print out the results.
foreach (string s in subset)
Console.WriteLine("Item: {0}", s);

Everything is the same as the previos method, except for the line in bold. This is using the extension
method syntax. This syntax uses lambda expressions within each method to define the operation. For
example, the lambda in the Where () method defines the condition (where a value contains a space). Just
as in the query expression syntax, the letter used to indicate the value being evaluated in the lambda is
random; I could have used v for video games.

While the results are the same (running this method produces the same output as the previous method
using the query expression), you will see soon that the fype of the result set is slightly different. For most
(if not practically all) scenarios, this difference doesn’t cause any issues, and the formats can be used
interchangeably.

Once Again, Without LINQ

To be sure, LINQ is never mandatory. If you so choose, you could have found the same result set by forgoing
LINQ altogether and making use of programming primitives such as if statements and for loops. Here

is a method that yields the same result as the QueryOverStrings() method but in a much more verbose
manner:

static void QueryOverStringsLongHand()
{

// Assume we have an array of strings.
string[] currentVideoGames = {"Morrowind", "Uncharted 2", "Fallout 3", "Daxter",
"System Shock 2"};

string[] gamesWithSpaces = new string[5];

453

CHAPTER 12 © LINQ TO OBJECTS

for (int i = 0; i < currentVideoGames.Length; i++)
{
if (currentVideoGames[i].Contains(" "))
gamesWithSpaces[i] = currentVideoGames[i];
}

// Now sort them.
Array.Sort(gameshWithSpaces);

// Print out the results.
foreach (string s in gamesWithSpaces)
{
if(s != null)
Console.WritelLine("Item: {0}", s);
}

Console.Writeline();

}

While I am sure you can think of ways to tweak the previous method, the fact remains that LINQ queries
can be used to radically simplify the process of extracting new subsets of data from a source. Rather than
building nested loops, complex if/else logic, temporary data types, and so on, the C# compiler will perform
the dirty work on your behalf, once you create a fitting LINQ query.

Reflecting Over a LINQ Result Set

Now, assume the Program class defines an additional helper function named ReflectOverQueryResults()
that will print out various details of the LINQ result set (note the parameter is a System.0Object to account
for multiple types of result sets).

static void ReflectOverQueryResults(object resultSet, string queryType = "Query

Expressions")

{
Console.WriteLine($"***** Info about your query using {queryType} *iok*x").
Console.WriteLine("resultSet is of type: {0}", resultSet.GetType().Name);
Console.WriteLine("resultSet location: {0}", resultSet.GetType().Assembly.GetName().Name);

}

Update the core of QueryOverStrings() method to the following:

// Build a query expression to find the items in the array

// that have an embedded space.

IEnumerable<string> subset = from g in currentVideoGames where g.Contains(
select g;

) orderby g

ReflectOverQueryResults(subset);
// Print out the results.

foreach (string s in subset)
Console.WriteLine("Item: {0}", s);

454

CHAPTER 12 LINQ TO OBJECTS

When you run the application, you will see the subset variable is really an instance of the generic
OrderedEnumerable<TElement, TKey> type (represented in terms of CIL code as OrderedEnumerable” 2),
which is an internal abstract type residing in the System.Core.d11 assembly.

xxx Info about your query using Query Expressionsii*
resultSet is of type: OrderedEnumerable2
resultSet location: System.Core

Make the same change to the QueryOverStringshWithExtensionMethods () method, with the exception
of adding "Extension Methods" for the second parameter:

// Build a query expression to find the items in the array
// that have an embedded space.
IEnumerable<string> subset = currentVideoGames.Where(g => g.Contains(" ")).OrderBy(g =>

g).Select(g => g);
ReflectOverQueryResults(subset, "Extension Methods");

// Print out the results.
foreach (string s in subset)
Console.WriteLine("Item: {0}", s);

When you run the application, you will see the subset variable is an instance of type System.Linq.
Enumerable+WhereSelectEnumerableIterator. If you remove Select(g=>g) from the query, you will be
back to having an instance of type OrderedEnumerable<TElement, TKey>. What does this all mean? For the
overwhelming majority of developers, not much (if anything). They both derive from IEnumerable<T>, both
can be iterated over in the same manner, and both can create a list or an array from their values.

*xHkk Info about your query using Extension Methods *****
resultSet is of type: WhereSelectEnumerableIterator 2
resultSet location: System.Core

Note Many of the types that represent a LINQ result are hidden by the Visual Studio Object Browser.
These are low-level types not intended for direct use in your applications.

LINQ and Implicitly Typed Local Variables

While the current sample program makes it relatively easy to determine that the result set can be captured
as an enumeration of the string object (e.g., IEnumerable<string>), I would guess that it is not clear that
subset is really of type OrderedEnumerable<TElement, TKey>.

Given that LINQ result sets can be represented using a good number of types in various LINQ-centric
namespaces, it would be tedious to define the proper type to hold a result set, because in many cases the
underlying type may not be obvious or even directly accessible from your codebase (and as you will see, in
some cases the type is generated at compile time).

455

CHAPTER 12 © LINQ TO OBJECTS

To further accentuate this point, consider the following additional helper method defined within the
Program class (which I assume you will invoke from within the Main() method):

static void QueryOverInts()

{

int[] numbers = {10, 20, 30, 40, 1, 2, 3, 8};

// Print only items less than 10.
IEnumerable<int> subset = from i in numbers where i < 10 select i;

foreach (int i in subset)
Console.WritelLine("Item: {0}", i);
ReflectOverQueryResults(subset);

In this case, the subset variable is a completely different underlying type. This time, the type
implementing the IEnumerable<int> interface is a low-level class named WhereArrayIterator<T>.

Item: 1
Item: 2
Item: 3
Item: 8

*xxxx Info about your query ¥k
resultSet is of type: WhereArrayIterator'1
resultSet location: System.Core

Given that the exact underlying type of a LINQ query is certainly not obvious, these first examples have
represented the query results as an IEnumerable<T> variable, where T is the type of data in the returned
sequence (string, int, etc.). However, this is still rather cumbersome. To add insult to injury, given that
IEnumerable<T> extends the nongeneric IEnumerable interface, it would also be permissible to capture the
result of a LINQ query as follows:

System.Collections.IEnumerable subset = from i in numbers where i < 10 select i;
Thankfully, implicit typing cleans things up considerably when working with LINQ queries.

static void QueryOverInts()

{

int[] numbers = {10, 20, 30, 40, 1, 2, 3, 8};

// Use implicit typing here...
var subset = from i in numbers where i < 10 select i;

/! ...and here.

foreach (var i in subset)
Console.WriteLine("Item: {0} ", 1i);

ReflectOverQueryResults(subset);

456

CHAPTER 12 LINQ TO OBJECTS

As a rule of thumb, you will always want to make use of implicit typing when capturing the results
of a LINQ query. Just remember, however, that (in a vast majority of cases) the real return value is a type
implementing the generic IEnumerable<T> interface.

Exactly what this type is under the covers (OrderedEnumerable<TElement, TKey>,
WhereArrayIterator<T», etc.) is irrelevant and not necessary to discover. As shown in the previous code
example, you can simply use the var keyword within a foreach construct to iterate over the fetched data.

LINQ and Extension Methods

Although the current example does not have you author any extension methods directly, you are in

fact using them seamlessly in the background. LINQ query expressions can be used to iterate over data
containers that implement the generic IEnumerable<T> interface. However, the .NET System.Array class
type (used to represent the array of strings and array of integers) does not implement this contract.

// The System.Array type does not seem to implement the correct

// infrastructure for query expressions!

public abstract class Array : ICloneable, IList, ICollection,
IEnumerable, IStructuralComparable, IStructuralEquatable

{

}

While System.Array does not directly implement the IEnumerable<T> interface, it indirectly gains
the required functionality of this type (as well as many other LINQ-centric members) via the static
System.Ling.Enumerable class type.

This utility class defines a good number of generic extension methods (such as Aggregate<T> (),
First<T>(), Max<T>(), etc.), which System.Array (and other types) acquires in the background. Thus, if you
apply the dot operator on the currentVideoGames local variable, you will find a good number of members
not found within the formal definition of System.Array (see Figure 12-1).

Program.cs™ -+ > [ela g0
[LinqOverArray - | %, LingOverArray.Program . I @, QueryOverStrings()

/f Build a query expression to find the items in the array +
// that have an embedded space. -
IEnumerable¢string> subset = from g in currentVideoGames
where g.Contains(” ")
orderby g
select g;
currentVideoGames.|
@ Aggregate<> - =1
ReflectOverqQueryRe o, ajics
@, Any<>

// Print out the ", AsEnumerable<>

foreach (string < o TN
L

Console.Hritel @; AsParallel<>

®, AsQueryable

} @, AsQueryable<>
. . @
- static void QueryOvers “v Averages> h
{
// Assume we have an array of strings.
strinel1 currentVidenGames = f"Morrowind”. "lncharted 2". -
107% =~ 4 »

Figure 12-1. The System.Array type has been extended with members of System.Linqg.Enumerable

457

CHAPTER 12 © LINQ TO OBJECTS

The Role of Deferred Execution

Another important point regarding LINQ query expressions is that they are not actually evaluated until you

iterate over the sequence. Formally speaking, this is termed deferred execution. The benefit of this approach
is that you are able to apply the same LINQ query multiple times to the same container and rest assured you
are obtaining the latest and greatest results. Consider the following update to the QueryOverInts() method:

static void QueryOverInts()

{

int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

// Get numbers less than ten.
var subset = from i in numbers where i < 10 select i;

// LINQ statement evaluated here!

foreach (var i in subset)
Console.WriteLine("{0} < 10", i);

Console.WritelLine();

// Change some data in the array.

numbers[0] = 4;

// Evaluated again!

foreach (var j in subset)
Console.WriteLine("{0} < 10", j);

Console.Writeline();

ReflectOverQueryResults(subset);

If you were to execute the program yet again, you would find the following output. Notice that the

second time you iterate over the requested sequence, you find an additional member, as you set the first
item in the array to be a value less than ten.

o W N B

oW N Rk b
AA AN AA

10
10
10
10

AN AN AN AN

10
10
10
10
10

One useful aspect of Visual Studio is that if you set a breakpoint before the evaluation of a LINQ query,

you are able to view the contents during a debugging session. Simply locate your mouse cursor over the
LINQ result set variable (subset in Figure 12-2). When you do, you will be given the option of evaluating the
query at that time by expanding the Results View option.

458

CHAPTER 12 LINQ TO OBJECTS

[Program.cs > | NN
[E] LinqOverArray -] %, LingOverArmay. Program - I @, QueryOverStrings() -
+=
ReflectOverQueryResults(subset); -
/f Print out the results.
[+] 'Fcr\eaclj (string s in subset)
Console.WriteLine("It 4 @ subset] (System LingOrderedEnumerable<string, string>] =) | =
| b @ Non-Public members \
3 b) Results View Expanding the Results View will enumerate the [Enumerable ﬂ
= static void QueryOverStringsLongHand()
{
// Assume we have an array of strings. -
107% -

Figure 12-2. Debugging LINQ expressions

The Role of Immediate Execution

When you need to evaluate a LINQ expression from outside the confines of foreach logic, you are

able to call any number of extension methods defined by the Enumerable type such as ToArray<T>(),
ToDictionary<TSource,TKey>(), and ToList<T>(). These methods will cause a LINQ query to execute at
the exact moment you call them to obtain a snapshot of the data. After you have done so, the snapshot of
data may be independently manipulated.

static void ImmediateExecution()

{

int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

// Get data RIGHT NOW as int[].
int[] subsetAsIntArray = (from i in numbers where i < 10 select i).ToArray<int>();

// Get data RIGHT NOW as List<ints.
List<int> subsetAsListOfInts = (from i in numbers where i < 10 select i).TolList<int>();

Notice that the entire LINQ expression is wrapped within parentheses to cast it into the correct
underlying type (whatever that might be) in order to call the extension methods of Enumerable.

Also recall from Chapter 9 that when the C# compiler can unambiguously determine the type parameter
of a generic, you are not required to specify the type parameter. Thus, you could also call ToArray<T> ()
(or ToList<T>() for that matter) as follows:

int[] subsetAsIntArray = (from i in numbers where i < 10 select i).ToArray();

The usefulness of immediate execution is obvious when you need to return the results of a LINQ query
to an external caller. And, as luck would have it, this happens to be the next topic of this chapter.

Source Code You can find the LingOverArray project in the Chapter 12 subdirectory.

459

http://dx.doi.org/10.1007/978-1-4842-3018-3_9
http://dx.doi.org/10.1007/978-1-4842-3018-3_12

CHAPTER 12 © LINQ TO OBJECTS

Returning the Result of a LINQ Query

It is possible to define a field within a class (or structure) whose value is the result of a LINQ query. To do
so, however, you cannot make use of implicit typing (as the var keyword cannot be used for fields), and the
target of the LINQ query cannot be instance-level data; therefore, it must be static. Given these limitations,
you will seldom need to author code like the following:

class LINQBasedFieldsAreClunky
{
private static string[] currentVideoGames = {"Morrowind", "Uncharted 2",
"Fallout 3", "Daxter", "System Shock 2"};

// Can't use implicit typing here! Must know type of subset!
private IEnumerable<string> subset = from g in currentVideoGames where g.Contains(" ")
orderby g select g;

public void PrintGames()
{

foreach (var item in subset)

{
Console.Writeline(item);
}
}
}

More often than not, LINQ queries are defined within the scope of a method or property. Moreover, to
simplify your programming, the variable used to hold the result set will be stored in an implicitly typed local
variable using the var keyword. Now, recall from Chapter 3 that implicitly typed variables cannot be used to
define parameters, return values, or fields of a class or structure.

Given this point, you might wonder exactly how you could return a query result to an external caller.
The answer is, it depends. If you have a result set consisting of strongly typed data, such as an array of strings
or a List<T> of Cars, you could abandon the use of the var keyword and use a proper IEnumerable<T> or
IEnumerable type (again, as IEnumerable<T> extends IEnumerable). Consider the following example for a
new console application named LinqRetValues:

class Program

{

static void Main(string[] args)

{

Console.WriteLine("***** LINQ Return Values ***¥¥\n");
IEnumerable<string> subset = GetStringSubset();

foreach (string item in subset)
{
Console.WriteLine(item);

}

Console.ReadlLine();

460

http://dx.doi.org/10.1007/978-1-4842-3018-3_3

CHAPTER 12 LINQ TO OBJECTS

static IEnumerable<string> GetStringSubset()

{
string[] colors = {"Light Red", "Green", "Yellow", "Dark Red", "Red", "Purple"};

// Note subset is an IEnumerable<string>-compatible object.
IEnumerable<string> theRedColors = from c in colors where c.Contains("Red") select c;

return theRedColors;

}
}

The results are as expected.

Light Red
Dark Red
Red

Returning LINQ Results via Immediate Execution

This example works as expected, only because the return value of GetStringSubset() and the LINQ
query within this method has been strongly typed. If you used the var keyword to define the subset
variable, it would be permissible to return the value only if the method is still prototyped to return
IEnumerable<string> (and if the implicitly typed local variable is in fact compatible with the specified
return type).

Because it is a bit inconvenient to operate on IEnumerable<T>, you could make use of immediate
execution. For example, rather than returning IEnumerable<string>, you could simply return a string[],
provided that you transform the sequence to a strongly typed array. Consider this new method of the
Program class, which does this very thing:

static string[] GetStringSubsetAsArray()

{
string[] colors = {"Light Red", "Green", "Yellow", "Dark Red", "Red", "Purple"};
var theRedColors = from c in colors where c.Contains("Red") select c;
// Map results into an array.
return theRedColors.ToArray();
}

With this, the caller can be blissfully unaware that their result came from a LINQ query and simply work
with the array of strings as expected. Here’s an example:

foreach (string item in GetStringSubsetAsArray())
{

}

Console.Writeline(item);

461

CHAPTER 12 © LINQ TO OBJECTS

Immediate execution is also critical when attempting to return to the caller the results of a LINQ
projection. You'll examine this topic a bit later in the chapter. Next up, let’s look at how to apply LINQ
queries to generic and nongeneric collection objects.

Source Code You can find the LingRetValues project in the Chapter 12 subdirectory.

Applying LINQ Queries to Collection Objects

Beyond pulling results from a simple array of data, LINQ query expressions can also manipulate data within
members of the System.Collections.Generic namespace, such as the List<T> type. Create a new Console
Application project named LinqOverCollections, and define a basic Car class that maintains a current speed,
color, make, and pet name, as shown in the following code:

class Car

{
public string PetName {get; set;} = "";
public string Color {get; set;} = "";
public int Speed {get; set;}

public string Make {get; set;} = "";

Now, within your Main() method, define a local List<T> variable of type Car, and make use of object
initialization syntax to fill the list with a handful of new Car objects.

static void Main(string[] args)

{

Console.WritelLine("***** | INQ over Generic Collections *****¥\n");

// Make a List<> of Car objects.
List<Car> myCars = new List<Car>() {
new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},
new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},
new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},
new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}
b

Console.ReadlLine();

Accessing Contained Subobjects

Applying a LINQ query to a generic container is no different from doing so with a simple array, as LINQ to
Objects can be used on any type implementing IEnumerable<T>. This time, your goal is to build a query
expression to select only the Car objects within the myCars list, where the speed is greater than 55.

462

http://dx.doi.org/10.1007/978-1-4842-3018-3_12

CHAPTER 12 LINQ TO OBJECTS

After you get the subset, you will print out the name of each Car object by calling the PetName property.
Assume you have the following helper method (taking a List<Car> parameter), which is called from
within Main():

static void GetFastCars(List<Car> myCars)

{
// Find all Car objects in the List<>, where the Speed is
// greater than 55.
var fastCars = from c¢ in myCars where c.Speed > 55 select c;

foreach (var car in fastCars)

{
Console.WriteLine("{0} is going too fast!", car.PetName);
}
}

Notice that your query expression is grabbing only those items from the List<T> where the Speed
property is greater than 55. If you run the application, you will find that Henry and Daisy are the only two
items that match the search criteria.

If you want to build a more complex query, you might want to find only the BMWs that have a Speed
value greater than 90. To do so, simply build a compound Boolean statement using the C# && operator.

static void GetFastBMWs(List<Car> myCars)

{
// Find the fast BMWs!

var fastCars = from ¢ in myCars where c.Speed > 90 && c.Make == "BMW" select c;
foreach (var car in fastCars)
{
Console.WriteLine("{0} is going too fast!", car.PetName);
}

}

In this case, the only pet name printed out is Henry.

Applying LINQ Queries to Nongeneric Collections

Recall that the query